Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish

Highlights

● Larval zebrafish escape from looming stimuli after a critical image size is reached

● Population activity of neurons in the optic tectum encodes critical image size

● Modeling predicts the critical role of characterized cell types in the retina and tectum

● Motor output is conveyed via multimodal circuitry in the hindbrain

Authors
Timothy W. Dunn, Christoph Gebhardt, Eva A. Naumann, Clemens Riegler, Misha B. Ahrens, Florian Engert, Filippo Del Bene

Correspondence
florian@mbc.harvard.edu (F.E.), filippo.del-bene@curie.fr (F.D.B.)

In Brief
Dunn et al. characterize the parameters influencing visually evoked escape behavior in larval zebrafish. Via large-scale functional imaging, the authors identify the neural circuits underlying the behavior and provide a mechanistic model that incorporates newly classified neural response types.
Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish

Timothy W. Dunn,1,2 Christoph Gebhardt,3 Eva A. Naumann,4 Clemens Riegler,1,6 Misha B. Ahrens,5 Florian Engert,1,2,* and Filippo Del Bene3,4
1Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
2Program in Neuroscience, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
3Institut Curie, PSL Research University, INSERM, U 934, CNRS UMR3215, 26 rue d’Ulm, 75005 Paris, France
4Department of Neuroscience, Physiology & Pharmacology, University College London, London WC1E 6BT, UK
5Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA
6Department of Neurobiology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
*Correspondence: florian@mcb.harvard.edu (F.E.), filippo.del-bene@curie.fr (F.D.B.)
http://dx.doi.org/10.1016/j.neuron.2015.12.021

SUMMARY

Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.

INTRODUCTION

When confronted with threatening stimuli, organisms respond with stereotyped behavioral patterns that promote survival. The most fundamental of these behaviors is the escape response, which delivers the individual away from assault. While these escapes are diverse across phyla (Chalif et al., 1985; Muijres et al., 2014; Sherrington, 1910), they are nevertheless highly conserved and occupy an ancient and essential corner of the ethogram. Indeed, when examined ontogenetically, escape behaviors typically develop before the organism can feed or make coordinated movements (Armstrong and Higgins, 1971), highlighting the vital importance of these avoidance programs.

The robustness and stereotypy of escape behaviors are of great utility for studies of sensorimotor computations (Dickinson and Moss, 2012; Eaton et al., 2001; Fotowat and Gabbiani, 2011; Korn and Faber, 2005). Historically, studies of escape behaviors have often focused on impulse-like mechanosensory stimulation such as a touch or brief auditory buzz, where stimulus control and behavioral execution are straightforward and where the underlying sensory detection and processing pathways are relatively compact. The visual system, however, is arguably better suited for detecting threatening stimuli, as visual cues can be detected long before the mechanical signatures of an approaching predator reach somatosensory and auditory systems (Billington et al., 2011; Fotowat et al., 2011; Khakhali et al., 2014; Oliva et al., 2007; Preuss et al., 2006; Yilmaz and Meister, 2013). At the same time, the sensory computations required for the visual detection of threats are potentially more complex, as these must involve the rapid analysis of high-dimensional spatiotemporal sensory streams. Nonetheless, mechanisms of visual escape behavior, typically evoked by signatures of impending collision (looming), have not been well studied outside of invertebrates (Gabbiani et al., 1999; von Reyn et al., 2014). Here, we use the behavioral, optical, and genetic accessibility of the larval zebrafish, Danio rerio, to address the neural basis of visually evoked escapes in a vertebrate animal.

In response to acoustic or tactile stimulation, larval zebrafish perform a fast, high-angle, stereotyped escape maneuver (the “C-bend”) that is conserved across most anamniotes (Eaton et al., 2001). This escape behavior is recruited by a short ipsilateral arc (minimum two synapses) from the ear (in the case of sound) to rhombomere 4 of the hindbrain, where a premotor system dominated by the large, morphologically distinct Mauthner cell (M-cell) effects a high-amplitude turn to the contralateral side. While it is not known in zebrafish whether the M-cell and its associated segmental homologs (collectively, the M-system) mediate any visually guided behaviors, studies in goldfish (Preuss et al., 2006; Zottoli et al., 1987) show that the M-cell may receive visual input from the optic tectum (OT), the homolog of the mammalian superior colliculus.

In turn, a large body of evidence supports a role for the OT in complex visual processing. The OT, by far the largest contiguous larval visual brain structure, is recurrently connected across its laminar architecture and receives direct input from the majority...
of retinal projections (Burrill and Easter, 1994) in addition to indirect input from accessory visual areas (Vanegas and Ito, 1983). Neurons in the OT show direction, orientation, speed, and size selectivity (Gabriel et al., 2012; Graama and Engert, 2012; Hunter et al., 2013; Niell and Smith, 2005) and respond to aversive (predator-like) and appetitive (prey-like) visual cues in many animals (Dean et al., 1989; Ewert, 1997; Muto et al., 2013). Furthermore, OT neurons in birds (Winkowski and Knudsen, 2008), tadpoles (Khakhain et al., 2014), frogs (Baranauskas et al., 2012), and fish (Niell and Smith, 2005) respond to looming stimuli. Thus, the OT is well positioned to mediate visually evoked escape responses by feeding filtered visual input to the hindbrain M-system and associated escape circuitry.

However, so far, a causal link between the hindbrain M-system and visually evoked escapes has not been demonstrated. Furthermore, most analyses of tectal processing have remained descriptive and treat single cells in isolation (Gabriel et al., 2012; Graama and Engert, 2012), independent of behavior and the activity of other visual, motion-sensitive midbrain structures such as the pretectum (Kubo et al., 2014; Portugues et al., 2014). Given its anatomical and functional position, an understanding of population activity in the OT during a well-defined visuomotor behavior would lead to new insights into how the vertebrate central nervous system isolates behaviorally relevant cues from sensory streams and transforms these into behavior.

In this study, we employ a combination of behavioral and calcium imaging techniques to map the sensory and motor systems underlying visually evoked escape behavior and construct a working model of behaviorally relevant stimulus representation in the OT. We establish that freely swimming larval zebrafish respond to visual stimuli representing object approach with directed C-bend escape maneuvers and describe a convergence in the circuits mediating mechanosensory and visual escapes at the premotor level. In addition, we demonstrate that the OT encodes the critical image size associated with escape latency across hundreds of periventricular neurons (PVNs), providing a novel basis for ethologically relevant processing in collicular structures. Furthermore, we measure the activity in the presynaptic terminals of retinal ganglion cells that provide the input to the OT as well as the response properties of superficial inhibitory interneurons (SIIs) that have been shown to serve as important computational units in the context of separating large from small moving objects (Del Bene et al., 2010). These data allow us to propose a mechanistic model of how the behaviorally relevant dynamics of PVNs—the putative output neurons of the OT—arise in the context of looming stimuli. Together, these results outline the circuitry and computations controlling a robust, innate visually guided behavior and reveal fundamental principles of neural system organization likely prevalent in subcortical visual structures across phyla.

RESULTS

Looming Visual Stimuli Evoke Fast Escape Maneuvers in Larval Zebrafish

To test how larval zebrafish respond to looming stimuli, we constructed an arena in which individual freely swimming fish were monitored with a high-speed camera while visual stimuli were presented with closed-loop feedback onto a screen beneath the animal (Figure 1A). This high-speed (506 fps acquisition,
60 Hz stimulus update), closed-loop stabilization generated maximal consistency in visual stimulation across presentations; furthermore, locked egocentric stimuli best matched the conditions used in subsequent imaging experiments.

Looming dark spots, which mimic approaching objects or predators (Gabbiani et al., 1999), were presented on a neutral gray background to 5- to 6-days-post-fertilization (dpf) larvae. These spots started at singular points and expanded as disks with either constant radial velocity (linear expansion) or constant approach velocity (hyperbolic expansion), the former corresponding to a decelerating approach. Stimuli were presented either to the left or right side of the animal, remaining exclusively within each respective monocular visual field (Bianco et al., 2011) for at least the first half of the expansion period. These looming stimuli typically evoked high-velocity, high-angle, long-distance swim maneuvers (Figures 1B and 1C; Movie S1) that we quantified using detailed kinematic analysis (Figure 1D).

To better distinguish looming-evoked escape responses from other maneuvers in the larval zebrafish behavioral repertoire (e.g., routine turns or spontaneous swimming), we plotted the maximum instantaneous linear velocities and bend angles of all locomotion events initiated after stimulus onset but before the stimulus had stopped expanding. This analysis revealed a cluster of high-velocity, high-angle events separated from routine turns and swimming, demonstrating that looming stimuli consistently evoke escape-like responses that are distinct from other behaviors (Figure 1E). To probe whether these responses were indeed specific to looming stimuli, we also presented spots that appeared instantaneously (flashed stimuli) or spots that dimmed with the same temporal dynamics as the looming stimuli. A response probability metric—the probability of maximum swim velocity exceeding 12.0 cm/s (Figures S1A–S1C)—indicated looming-stimuli-induced escapes about half of the time (51.0 ± 3.8% for linear expansion, and 46.0 ± 9.3% for hyperbolic expansion), whereas high-velocity escape maneuvers almost never occurred during presentation of dimming and flashed stimuli (3.4 ± 1.1% and 2.0 ± 1.3%, respectively).

To test in more detail which stimulus feature generated the escape behavior during looming stimulus presentation, we evaluated whether object expansion was the key trigger. Expanding disks decrease overall luminance; although larvae did not escape to dimming alone, it is possible that a conjunction of looming and dimming is required for triggering escapes. Therefore, we presented checkered looming stimuli (Fotowat and Gabbiani, 2007), which were subjectively isoluminant over the time course of expansion. These stimuli were equally efficacious in evoking escape responses (57.0 ± 6.1% of the time for linear expansion; Figure 1E; and 60.2% ± 4.7% for hyperbolic expansion), providing further evidence that this behavior employs complex, luminance-independent visual computations to detect expanding borders, consistent with looming-evoked escape responses in other species (Gabbiani et al., 2001; Landwehr et al., 2013; de Vries and Clandinin, 2012).

Zebrafish escape behavior has so far been described primarily in the context of mechanosensory C-starts (Burgess and Granato, 2007a; Gahtan et al., 2002; Kohashi and Oda, 2008; Liu and Fetcho, 1999; O’Malley et al., 1996), which are characterized by stereotyped kinematics. To better define looming-evoked behavior and compare it to these C-start escapes, we analyzed seven different kinematic variables across four looming stimulus conditions: black or checkered constant radial expansion and black or checkered hyperbolic expansion. While the former pair simulated a decelerating approach trajectory, the latter pair simulated object approach at constant velocity, the stimulus most commonly used in other organisms (Hatsopoulos et al., 1995). We found that most kinematic variables tested were indistinguishable across the four stimuli with the exception of maximum bend angle, which varied slightly depending on the temporal dynamics of expansion (Figure 1F). Applying the Bonferroni correction (Dunn, 1961) for multiple comparisons, however, eliminates this significance. Thus, all four types of looming stimuli trigger indistinguishable motor programs.

Across all stimulus conditions, looming-evoked behaviors are characterized by at least three unique phases. First, larvae initiated a rapid (bend duration 9.4 ± 0.1 ms; maximum bend velocity 19.5 ± 0.2 /ms), high-angle bend (133.4 ± 2.1°) that quickly reverses heading direction. Second, fish performed a counterclockwise re-oriented the body (70.4 ± 1.3°). Third, fish executed a high-velocity burst swim (velocity 16.4 ± 0.2 cm/s; burst (undulation) frequency 62.7 ± 0.9 Hz) away from the starting position (distance 1.5 ± 0.1 cm, mean ± SEM across fish). These kinematics closely resemble the C-start escape behaviors elicited by mechanosensory modalities (Figures S1D–S1F) (Budick and O’Malley, 2000; Eaton et al., 1988) and are starkly different from the high-angle dark flash o-bend (Burgess and Granato, 2007b; Huang et al., 2013) or large spot avoidance (Bianco et al., 2011) behaviors previously described. Thus, this response to looming stimuli is the first detailed description of a rapid escape behavior elicited by a visual stimulus in freely swimming larval zebrafish.

Escape Trajectories Are Dictated by Stimulus Position within the Visual Field

The directionality of escape can often be influenced by the location of the eliciting stimulus, reflecting an obvious but important strategy to effectively distance oneself from threats. Touch-evoked escapes in larval zebrafish are coarsely directional (Kohashi et al., 2012), and looming-evoked behaviors in locusts (Santer et al., 2005), flies (Card and Dickinson, 2008), and adult goldfish (Eaton and Embery, 1991) show a dependence on incident angle. To probe whether looming-evoked behavior in larval zebrafish is influenced by stimulus position, we compared the escape trajectories elicited by looming stimuli presented in fixed positions in either the front, back, right, or left visual field (0°, 180°, 270°, and 90° relative to the fish center of mass, respectively). In 33 fish, stimuli in the right visual field consistently evoked escapes to the left, and vice versa. This relationship is readily identifiable when escape trajectories are rotated and aligned onto the body axis for each condition (Figure 2A). Despite differences in escape direction (Figure 2B, angular histograms), the velocity of escape maneuvers is similar across all conditions, as evidenced by plots of fish position 50 ms after escape initiation (Figure 2B). Quantification of response preference across fish formalizes a strong positional dependence for left and right stimuli (0.68 ± 0.09 and −0.69 ± 0.09 preference index, respectively) and a lack of directional bias for binocular front and back...
Figure 2. Stimulus Position and Dynamics Dictate Escape Direction and Latency

(A) Top panel shows escape trajectories elicited by looming dark spots in the right (blue, N = 34 fish, and n = 214 events) or left (black, N = 33, and n = 198) visual field. Bottom panel shows escape trajectories elicited by looming dark spots centered in the nasal [back] (orange, N = 21, and n = 164) or temporal [front] (green, N = 23, and n = 177) visual field.

(legend continued on next page)
stimuli (−0.14 ± 0.11 and 0.10 ± 0.10 preference index, respectively) (Figure 2C). Further analysis reveals that the observed trajectory bias reflects differences in absolute maximum turn angle (100.5° ± 2.3° for left, 100.7° ± 2.2° for right, 114.6° ± 1.5° for front, and 94.5° ± 2.0° for back stimuli), with back stimuli eliciting significantly shallower (smaller turn angle) responses (p = 0.002, permutation test). As indicated, the distance traveled by larvae after 50 ms does not depend on stimulus position (3.61 ± 0.04 mm for left, 3.54 ± 0.04 mm for right, 3.75 ± 0.04 mm for front, and 3.58 ± 0.04 for back stimuli; back, front p = 0.127, permutation test). It is worth noting that even in response to the same stimulus type, individual trajectories are highly variable; this suggests that larvae might employ a protean evasion strategy (Domenici et al., 2008; Humphries and Driver, 1970) that makes it harder for predators to predict and foil escapes once they are triggered. Nevertheless, these data demonstrate that larvae utilize a sensorimotor transformation that conserves positional stimulus information and alters escape motor programs accordingly.

Escapes Are Triggered When Stimuli Reach a Critical Visual Angle

To probe the effect of stimulus expansion velocity on visually evoked escape behaviors, we next presented a set of five stimuli that mimicked disks of constant radius approaching larvae from below at different velocities. When projected onto a flat surface, these stimuli can be described by functions of spot radius over time arising from fixed ratios of simulated disk radius and approach velocity (R/V; Figure S2) (Hatsopoulos et al., 1995). Escape latency was strongly modulated by stimulus velocity, with faster stimuli reliably eliciting escapes with shorter latencies (Figure 2D). When functions of stimulus image size and edge velocity are evaluated at times of escape onset (minus a fixed processing lag, Δt = 81 ms; see Experimental Procedures), an average threshold in angular image size (72.0° ± 1.3°, mean ± SEM across all 5 velocity conditions; p = 0.198, and F-statistic [ANOVA] permutation test; Figure 2E), but not edge velocity (Figure 2F), emerges (p < 10⁻⁵, F-statistic [ANOVA] permutation test). This result is similar to descriptions of looming-evoked escape behaviors in other organisms (Fotowat and Gabbiani, 2007) and suggests that the circuits processing looming stimuli may primarily use stimulus size information when determining when and if an escape should be initiated.

Looming Stimuli Are Primarily Represented in the Optic Tectum

Our classification of looming-evoked escape behavior allowed us to explore the representation of this novel and ethologically relevant stimulus across various visual brain regions using calcium imaging in pan-neuronal Tg(élav3:GCaMP6S) 5- to 6-dpf larvae (Figure 3A) (Ahrens et al., 2013). To this end, larvae were fully embedded in agarose and imaged with a two-photon laser scanning microscope during stimulus presentation (Ahrens et al., 2012) to screen neurons for response selectivity. Looming stimuli and flashed stimuli evoked responses throughout the midbrain, which we segregated into three main regions based on anatomical boundaries and functional similarities: the OT, the pretectum/thalamus (PT/TH), and the midbrain tegmentum (MB) (Figure 3B). Responses to stimuli were diverse but, within the scope of this experiment, were categorized based only on significant differences in activity during looming and flashed stimulus epochs compared to baseline (see Experimental Procedures). This reduction allowed us to analyze stimulus selectivity, an indicator of processing specificity, throughout visual processing regions.

To quantify the anatomical distribution of looming-selective neurons across brain regions and fish, we mapped active neurons to a standard fish brain (Ahrens et al., 2012) after assigning a looming/flash selectivity index (SI; [zloom − zflash]/[zloom + zflash]; see Experimental Procedures) that effectively classified neural responses, with more positive values reflecting greater looming selectivity (Figure 3C). This analysis revealed a preponderance of looming-selective neurons in the ventral OT compared to other midbrain regions we analyzed (Figure 3D). Furthermore, looming-selective activity in the OT typically peaked prior to the end of expansion, consistent with the timing of escape initiations (see examples in Figure 3B). On average, the OT was more than twice as selective as PT/TH or MB (0.35 ± 0.01, 0.17 ± 0.01, 0.11 ± 0.01 SI, respectively; OT, PT/TH p < 10⁻⁵; OT, MB p < 10⁻⁵, permutation test) and contained almost twice as many responsive neurons per unit volume (3.13 ± 0.40, 1.51 ± 0.28,
Population Activity Encodes Critical Image Size during Looming

If the OT is fundamentally involved in looming processing, activity in the OT should reflect the input-output relationships observed in freely swimming fish. To test this, we presented a set of looming stimuli expanding at three different R/V ratios (545 ms, 1,090 ms, and 2,730 ms) while imaging neural responses in the PVNs of the ventral OT.

Like ventral OT responses to constant radial expansion, activity in ventral OT neurons typically peaked prior to the end of expansion under different velocity conditions (Figures 3E, top, and S3C). The timing of these peaks relative to stimulus onset, however, was strongly influenced by expansion velocity, with responses to the slowest stimulus peaking nearly 8 s after responses to the fastest; this trend was reminiscent of the velocity-latency relationship we observed in freely swimming fish (Figure 3F). In order to better evaluate this correspondence, we performed principal component analysis to provide an unbiased estimate of looming representation across the OT neuronal population.

After aligning convolved stimulus size over time with the temporal evolution of the first principal component (temporal principal component, TPC1), which explained between 44% and 82% of the neural response variance (Figures S3A and S3B), a clear link between TPC1 and stimulus size is revealed (Figure 3E, bottom). Across all three velocity conditions, the OT population signals a common average angular image size (66.0 ± 4.5°; mean ± SEM across n = 23 TPC1 datapoints reaching threshold (of a possible 30) from 10 fish, 1,816 neurons, dotted black line in Figure 3F, left; see Experimental Procedures; p = 0.955, one-way ANOVA; compare to Figures 2D and 2E) during expansion as its activity crosses a fixed threshold (81% of the normalized peak TPC1 across stimuli; see Experimental Procedures). In order to estimate the visual angle signaled by TPC1, which reflects activity convolved with indicator dynamics that temporally shift underlying representation, this analysis was performed using convolved stimulus variables (GCaMP5G kernel, τ = 962 ms; Chen et al., 2013); a similar threshold angular image size is found when relating deconvolved TPC1 dynamics to raw visual angle (64.9° ± 5.0°; Figure S3D). This threshold angular image size represented by the OT population is in close agreement with the critical image size found to trigger the behavior in freely swimming experiments (72.0° ± 1.3°). Also similar to the behavior, TPC1 does not reach a threshold at a coherent edge velocity (Figure 3F, right). These data argue that the OT is capable of encoding a critical looming visual angle as an ensemble, providing an example of a putative mechanism for salient expansion encoding across a collicular population.

Retinal Ganglion Cell Terminals and SINs in the OT Encode Diverse Features of Looming Stimuli

In order to dissect the role of individual neural components of tectal circuitry in generating the population activity encoding critical angle, we analyzed activity patterns in two distinct neural cell types: retinal ganglion cells (RGCs) that send axons into the four input layers of the OT (SO, SFGS, SGC, and SAC; Nikolau et al., 2012), and SINs, which have been shown to play a significant role in filtering out large (Del Bene et al., 2010) as well as small (Preuss et al., 2014) moving visual stimuli. In order to measure activity in RGC terminals, we generated a transgenic fish line (UAS:SyGCaMP6s) in which GCaMP6s (Chen et al., 2013) is linked to synaptophysin, and expression in RGCs is driven by an Isl2b:Gal4 line (Figure 4A) (Nikolau et al., 2012). Presentation of looming stimuli at three different approach speeds revealed diverse dynamics in RGC terminals. Using a regression-based clustering approach (see Experimental Procedures; Bianco and Engert, 2015), we identified four major clusters capturing distinct properties of the rapidly evolving looming stimuli (Figure 4B). Notably, none of these clusters sufficiently match the population activity signatures extracted from the PVN population (see Figure 5), arguing that further processing occurs between retinal OT inputs and downstream PVNs.

In order to isolate putative processing units within the OT that might transform RGC inputs into the observed PVN population responses, we used a previously described line expressing nuclearly localized GCaMP6s (Freeman et al., 2014) under the elavl3 promoter, which, among other tectal neurons, also labels the SIN population. In this line, SINs are easily separated from other neurons in the OT because they are spatially segregated within neuropil layers (Figure 4C). Regression-based cluster analysis identified three main SIN response types, characterized by SIN responses to looming stimuli of different speeds (Figure 4D).

Non-linear Regression Identifies Two SIN Response Types as Potential Computational Modules Honing RGC Input in the OT

We next tested whether one or several of the SIN response types are sufficient to generate the signals recorded in the PVNs when they are allowed to operate on the input signals arriving in the OT via RGC projections. Figure 5A shows the four deconvolved RGC response types overlaid on the deconvolved average trace of the primary PVN response type extracted via cluster analysis (Figure S4); we focused on this PVN cluster because its activity appeared to shape TPC1 almost exclusively (Figure S4). It is clear that there is no perfect overlap between the PVN response and any of the RGC responses. The presence of well-characterized, wide-field GABAergic inhibitory interneurons (SINs) operating on the excitatory RGC inputs, however, suggested that the PVN population might inherit its response profile in a manner consistent with invertebrates, where excitatory and inhibitory inputs are non-linearly combined to create receptive fields that encode critical angle (Gabbiani et al., 1999). To ask whether a similar model, using excitation from RGCs and inhibition from SINs, might explain PVN responses, we tested pairwise combinations of RGC and SIN response types using a non-linear regression analysis (Figure 5B). Across all pairs, four show significantly
Figure 3. Looming-Specific Neurons in the Optic Tectum Encode Critical Size

(A) Left panel is a schematic of the larval zebrafish brain indicating the positions of the optic tectum (OT) with its neuropil (NP) and cell body layers (stratum periventriculare, or SPV), the pretectum/thalamus (PT/TH), and the midbrain tegmental region (MB). The right panels depict a transverse average intensity projection of a 5-dpf Tg(elavl3:GCaMP2) larval brain (used as an anatomical reference) and accompanying sagittal view. TH, thalamus; PT, pretectum. Dotted lines denote the position of each eye: r, rostral; c, caudal; d, dorsal; and v, ventral.

(legend continued on next page)
enhanced R^2 values, with three pairs, including the best model, properly incorporating SIN activity as inhibitory (Figure 5C). Of these three pairs, two share a common RGC type, and two share a common SIN type. Notably, the best model uses an RGC type (no. 1) that, on its own, explains PVN activity poorly ($R^2 = 0.22$, with SINs $R^2 = 0.89$), illustrating that SIN inhibition may contribute to PVN dynamics significantly. This fit is also better than that achieved with a linear regression ($R^2 = 0.79$) combining all four RGC types. Furthermore, the best RGC-SIN model uses the most frequent RGC type (no. 1) and SIN type (no. 1), suggesting that OT looming computations are salient and comprise functional units established by direct retinal excitation and indirect, processed retinal inhibition.

The Mauthner System Dictates Looming-Evoked Escape Direction

After looming stimuli are processed by the OT, the OT must recruit a specific motor program that completes the sensorimotor transformation (see proposed model, Figure 6A). In adult teleost fish, activity in the M-cell, a large hindbrain spinal projection neuron involved in mechanosensory escapes, is correlated with looming-evoked escapes (Preuss et al., 2006), and the M-cell receives projections from the OT on its ventral dendrite (Zottoli et al., 1987). Given this history and the kinematic similarities between the escape responses evoked by mechanosensory neurons and looming stimuli, we hypothesized that the M-cell and its segmental homologs, morphologically and functionally similar neurons in rhombomeres 4 to 6 (Liu and Fetcho, 1999), would govern visually evoked escape behavior.

To test this hypothesis, we backfilled the hindbrain reticulospinal system (Huang et al., 2013; O’Malley et al., 1996) to label the M-cell and its homologs (MiD2 and MiD3) and target them for laser ablation with a two-photon microscope. A short (100-ms to 2-s), high-power (~100-mW at sample) laser pulse (Orger et al., 2006) was sufficient to cause a loss of cell morphology and fluorescence specific to the targeted neuron and not its labeled neighbors (Figure 6B). Because escape direction is lateralized and easily separated by left-right stimulus position, we performed unilateral ablations of the M-cell and its homologs, using the intact contralateral side as an internal control. Analysis of monocular looming-evoked escapes before and after unilateral ablation revealed a pronounced decrease in maximum turn angle (Figure 6C). Only escape responses contralateral to the ablated M-system (M-cell, MiD2, and MiD3) were perturbed (non-ablated side, $p = 0.093$; ablated side, $p = 0.002$, permutation test). This change is consistent with the laterality conferred by the descending axons of the M-system (Gahtan and O’Malley, 2003) and is not explained by non-specific perturbations of other spinal projection neurons such as the ventromedially located spinal projection neurons (Huang et al., 2013), which determine the direction of ipsilateral turns. As a result of this turn deficit, escape trajectories also changed (Figure 6D). However, the reduction in turn angle and trajectory was not concomitant with an obvious decrease in escape velocity or distance (Figure 6E). The turn deficit was confirmed on a fish-by-fish basis (Figure 6F), and cumulative distribution plots of maximum turn angle revealed a significant shift in turn angle for the ablated side across all events ($p < 10^{-5}$).

Other kinematic parameters such as escape duration (Figure 6G) remained unchanged for responses to both the non-ablated and ablated side, suggesting that an independent population of neurons may control the late phase of the visually evoked escape response. We also analyzed histograms of spontaneous turn angles, which were not significantly different post-

(B) Left panels depict single planes showing anatomy (gray) and activity (blue) in the dorsal and ventral OT, PT/TH, and MB. Individual region of interest (ROI) numbers (ROIs shown as colored circles) correspond to the traces on the right, which illustrate the general pattern of activity observed across midbrain visual areas in response to looming stimuli. Neurons in the dorsal OT (1 and 2) respond weakly to looming stimuli. Neurons in the ventral OT (3 and 4) show more varied responses but typically respond strongly to and favor looming stimuli. Neurons in PT/TH (5 and 6) respond to both looming and flashed stimuli. Neurons in MB (7 and 8) were typically active spontaneously and non-stimulus-locked. Boxes represent stimulus presentation periods. Traces are re-ordered and concatenated from longer recordings.

(C) The middle panels show trial-averaged normalized $\Delta F/F$ evoked by looming and flashed stimuli from 1,613 active neurons across 12 fish. Each neuron is sorted according to its selectivity index (see Experimental Procedures) in descending order (1 = looming exclusive, $-1 =$ flash exclusive). The left-most panel shows the corresponding anatomical location of each neuron, color-coded as in (B). The right-most panel shows the average normalized $\Delta F/F$ binned across 100 neurons from the sorted list. Traces are normalized to $[0 \ 1]$ after trial averaging. Normalization values were skewed to the right (maximum 586.24% $\Delta F/F$, minimum 21.02% $\Delta F/F$, and skewness 1.28). Dotted lines and boxes represent stimulus presentation periods, with start times indicated by arrowheads.

(D) The top panel depicts all neurons from (C) mapped to a reference brain and colored according to selectivity index. Arrowhead shows the preponderance of looming-selective neurons in the ventral OT. Differences in the number of OT neurons between the left and right hemispheres reflects a sampling bias (data from stimuli presented in the left and right visual fields were pooled); most OT imaging was unilateral. The middle panel shows bar plots quantifying mean selectivity (left) and responsive cell density (right) across the OT (n = 60 imaging planes), PT (n = 34), and MB (n = 44). In the bottom panel, histograms show the distribution of looming selectivity across neurons in the OT (n = 973 cells), PT (n = 279), and MB (n = 361). $p < 10^{-5}$, $p < 0.01$, permutation test. N = 12 larvae, r, rostral; c, caudal; d, dorsal; and v, ventral.

(E) Top shows the responses of 110 OT neurons in one fish to looming stimuli simulating approach at three different velocities (R/V 545 ms, 1,090 ms, and 2,730 ms, top to bottom). The stimulus size (angle) over time for each condition, convolved with a calcium impulse response function (CIRF) ($t = 962 ms$), is shown in red. Bottom shows the first temporal principal component (TPC1, ± SEM across fish) averaged over eight fish, 1,533 neurons. The spots above each trace schematize the size of the looming stimulus before the TPC1 threshold (dark spot). Stimuli continue to expand (ellipses) until the end of the stimulus epoch. Crosses show the average value of each stimulus variable at the TPC1 threshold for each velocity condition. Error bars are SEM for TPC1 threshold timing (horizontal) and respective stimulus variables (vertical) across fish. Dotted lines represent the mean visual angle and edge velocity at TPC1 threshold across all fish and conditions.

Neuron 89, 613–628, February 3, 2016 ©2016 Elsevier Inc. 621
ablation (Figure 6G, right). Because spontaneous turns are thought to be governed by separate premotor circuitry (Huang et al., 2013), we conclude that ablations were specific to the intended M-system targets.

These data provide strong evidence for multi-modal convergence of sensory signals within the M-system of larval zebrafish, and this is the first study to establish a necessary role of the M-system in visually evoked behavior. The M-system thus assumes an essential role in the sensorimotor transformation from looming stimuli to escape behavior, providing a functional scaffold for the zebrafish to quickly evade threats identified with their eyes alone.

DISCUSSION

We have shown, to the best our knowledge, the first quantification of visually evoked escape behavior in freely swimming larval zebrafish. This escape behavior is elicited specifically by looming stimuli and not by flashed or dimming spots, illustrating a highly tuned system for processing image expansion within the
zebrafish visual system. High-angle turns elicited by whole-field dark flashes have been described previously (Burgess and Granato, 2007b; Chen and Engert, 2014; Huang et al., 2013), but these maneuvers (“o-bends”) are relatively slow and are not followed by high-velocity burst swims. Furthermore, o-bend directionality appears linked to either turn history (Chen and Engert, 2014) or asymmetries in field luminance (Burgess and Granato, 2007b), not stimulus position. Thus, the dark flash response

Figure 5. Regression Models Predict PVN Responses to Looming Stimuli

(A) Deconvolved mean RGC cluster traces (colored) overlaid on the deconvolved primary PVN trace (black; see Figure S4A, derived from the dataset in Figure 3E) collected in response to slow (R/V = 2,730 ms), medium (R/V = 1,090 ms), and fast (R/V = 545 ms) looming stimuli. R² values are calculating during stimulus period, gray. Each RGC trace is normalized to the maximum of the PVN trace across stimuli. (B) Schematic of the eta-like non-linear regression model used to explore whether inhibition from SIN clusters can be combined with excitation from RGC clusters to tune PVN responses. The model attempts to explain the deconvolved firing rate of PVNs (FRPVN) using a combination of scaled deconvolved RGC firing rate (FRRGC) and exponentially weighted deconvolved SIN firing rate (FRSIN), pairwise for each identified response cluster. (C) Bar plot of the best-fit R² values for each SIN-RGC response pair, as determined by the non-linear regression in (B). Four combinations predict PVN responses better than the best-matched RGC cluster (black dotted horizontal line; R² = 0.65). Best-fit individual regression models that assign negative β₂ coefficients, and thus accurately treat GABAergic SINs as inhibitory, are shown in pink. (D) Illustration of the best SIN-RGC regression model (right-most bar in C, R² = 0.89). The top traces show normalized FRRGC (blue) and FRSIN (gold) for clusters 1 and 1, respectively. The middle traces show individual model terms incorporating FRRGC (blue) and FRSIN (gold) and their respective best-fit coefficients. These traces are multiplied to arrive at a prediction of PVN activity (bottom, red). Note that FRRGC is suppressed significantly by FRSIN as stimuli increase in size, effectively shifting the FRRGC peak to better match FRPVN (bottom, black).
appears more to re-orient larvae than to propel them away from harm. Given these differences, we believe that looming-evoked escapes represent a separate, novel class of visually evoked behavior in larval zebrafish.

Analysis of the relationship between escape latency and approach velocity under our experimental conditions revealed a threshold angular image size for behavior initiation that is reminiscent of looming size thresholds in other organisms (Fotowat and Gabbiani, 2011; Oliva et al., 2007). In locusts and flies, the link between stimulus dynamics and behavior has been traced to a pair of wide-field neurons whose spike rates during looming can be described by a function (typically labeled eta) that peaks with a fixed delay before a critical visual angle (Hatsopoulos et al., 1995) and the onset of escape (Fotowat and Gabbiani, 2007). We provide evidence that a similar non-linear computation involves primary RGC and SIN types, but the specific way in which these components are combined to affect population activity in the OT is, as of yet, unknown.

In order to gain additional insight into the specific neural computation underlying looming detection, we functionally imaged main retino-recipient midbrain structures as they responded to looming and flashed stimuli and uncovered a preponderance of looming-selective neurons within the ventrocaudal OT. This selectivity may be conferred by the integration of motion-selective inputs from the retina (Nikolaou et al., 2012) or from within the OT itself (Gabriel et al., 2012; Grama and Engert, 2012). Although we have not assessed the necessity of the OT for looming-evoked escapes, the high density of looming-selective responses in the ventrocaudal OT provides strong correlative evidence that the OT is involved in processing looming stimuli; extra-tectal neurons and arborization fields may process other visual cues such as whole-field motion and luminance changes. Given the broad responsiveness of neurons within the OT and the nature of our stimulus delivery (onto the dorsal retina), it is likely that the concentration of looming selectivity in the ventrocaudal OT arises primarily due to established retinotopy (Nevin et al., 2010) and does not reflect a specialized processing region. However, the broad spatial distribution of activity within the OT, along with our principal component analysis, does suggest that the computation and isolation of looming-related features from the visual scene may operate at a network level before activity is projected out of the OT to recruit downstream motor programs.

Although it remains possible that a subset of looming-selective neurons in the OT form a specialized class of looming detectors that drive behavior, a distributed representation of critical visual angle presents several distinct advantages. First, the majority of tectal neuron spatial receptive fields (as assayed by moving spots) are smaller than the critical image size that appears to trigger the escape behavior (Niell and Smith, 2005). Large stimuli may thus be encoded best by a combination of multiple tectal neurons staggered over retinotopic space. Second, a distributed representation of stimuli may increase the overall flexibility of stimulus representation in the OT. Because animals must extract relevant information from complex visual scenes occupying a large space of possible stimulus combinations, a functional platform for encoding many different stimuli across the OT population can guide behavior more amenable. The ensemble encoding of critical visual angle during stimulus expansion thus constitutes a small subset of the total response space likely spanned by the OT. Last, high-dimensional representations of stimuli have been shown to improve animal performance on tasks by increasing the degeneracy of available input-output relationships in readout neurons (Rigotti et al., 2013). It is possible that the escape circuitry presented here utilizes a similar strategy to ensure that escapes are triggered reliably in individual animals and across stimulus presentations.

We have shown that the OT population representation of looming stimuli may require distinct computational modules that contribute uniquely to the encoding of critical visual angle during stimulus expansion. GCaMP6s expression in RGC presynaptic boutons allowed us to measure RGC activity patterns in response to looming stimuli. We used these patterns to construct a model predicting that OT ensemble activity is
generated through a modulation of one class of RGC inputs by a specific subset of SINs that may act individually, but also in concert, to shape the population code across PVNs. These PVNs could then innervate the M-cell via synapses that might further be gated or modulated by independent or parallel inputs. The experiments reported here thus provide a framework for a quantitative model of looming selectivity, whose precise details remain to be identified by future experiments.

A recent study analyzed looming-evoked behavior in head-restrained zebrafish larvae (Temizer et al., 2015) and found that escapes are elicited by expanding dark or bright disks in the visual field. Consistent with our study, the authors discovered a size threshold for the behavior, albeit of a value different from our own observations (21.7° visual angle). This discrepancy probably results from differences in experimental conditions (i.e., head-restrained side-projection versus freely swimming bottom-projection); future analyses, such as consideration of visual solid angle and Snell’s law (Wolf and Krötzsch, 1995), should help reconcile these results. In addition, Temizer et al. show that RGC arbors in the stratum fibrosum et griseum superficiale (SFGS) of the OT are selective for looming over dimming stimuli. We show, however, that simply integrating over RGCs is insufficient to explain the time course of the PVN dynamics correlated with critical angle. Rather, we suggest that further intratelral processing via interneurons in the upper layers of the OT is necessary.

Last, we sought to shed light on the involvement of the M-cell in the context of looming-evoked escapes. While canonical C-start escape responses are preceded by a spike in the M-cell, ablation of the M-system only affects escape latency and bend velocity, not bend angle, when assayed with acoustic or tactile stimuli (Burgess and Granato, 2007a; Liu and Fetcho, 1999). These results have cemented an idea of parallel hindbrain escape circuitries that form a redundant pathway for escape behavior. However, ablation of the M-system results in a specific bend deficit in response to looming stimuli, suggesting that visual stimuli recruit only a subset of the available escape circuitry, perhaps reflecting a functional bias toward more reliable modalities (e.g., mechanosensation). How the escape circuitry receives signals from visual areas to trigger an escape is still unclear, however. Anatomical and functional evidence from adult goldfish has suggested a direct pathway from the OT to the ventral dendrite of the M-cell (Zottoli et al., 1987), but this pathway has yet to be confirmed in larval zebrafish, leaving open the possibility of either a direct or indirect path from the OT. Taken together, our study provides an overview of a potential circuit mediating a visually evoked escape behavior in a vertebrate model organism and provides an important foundation for future studies of ethologically relevant tectal processing.

EXPERIMENTAL PROCEDURES

Behavior

All experiments followed the guidelines of the National Institutes of Health and were approved by the Standing Committee on the Use of Animals in Research of Harvard University. For detailed kinematic analyses, larvae (5–6 dpf) were monitored at 506 fps using a high-speed camera (Mikrotron GmbH) in a 9.2-cm Petri dish (VWR), 3–5 mm water height. Custom-written C# software extracted fish position and orientation and updated stimuli in a closed-loop configuration. For constant radial expansion trials, the stimulus was centered 0.5 cm to either the left or right of the fish center of mass. Stimuli expanded with a constant radial velocity of 0.5 or 0.6 cm/s until reaching r = 1 cm and disappeared 5 s after expansion commenced. Stimuli were presented onto a screen underneath the fish using a digital light processing (DLP) projector (Dell M109S).

Calcium Imaging

To assay neural responses, 5– to 6-dpf Tg(elavl3:GCaMP5G) larvae (Ahrens et al., 2013) were paralyzed with alpha-bungarotoxin (1 mg/mL; Invitrogen) and embedded in 2% low-melting-point agarose before being imaged with a custom-built two-photon laser scanning microscope. Stimuli were presented in the red channel onto a screen underneath the fish using a digital light processing (DLP) projector (Dell M109S).

For more details regarding behavior analyses, imaging analyses, ablations, and statistics, see Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, four figures, and two movies and can be found with this article online at http://dx.doi.org/10.1016/j.neuron.2015.12.021.

AUTHOR CONTRIBUTIONS

T.W.D., M.B.A., F.E., and F.D.B. conceived the project; T.W.D. carried out the experiments and analyzed the data; C.G. analyzed data and conceived the SIN experiments. C.R. generated transgenic fish lines. T.W.D., C.G., E.A.N., M.B.A., F.E., and F.D.B. wrote the paper.

ACKNOWLEDGMENTS

We are grateful to James Fitzgerald for aiding in the initial analysis of the imaging data and to Jeremy Freeman for providing advice on statistical analysis. We thank Drew Robson, Jennifer Li, and Michael Orger for generating the Tg(elavl3-GCaMP5G) fish line. We thank Jessica Miller, Steve Zimmerman, and Alex Schier for fish husbandry. We thank Evan Feinberg, Arjun Krishnaswamy, Joseph Bell, Isaac Bianco, and Christopher Harvey for providing helpful feedback on the manuscript. T.W.D. was supported by the National Science Foundation Graduate Research Fellowship Program, and his collaboration with C.G. and F.D.B. was made possible by the NSF Graduate Research Opportunities Worldwide Fellowship. E.A.N. was supported by a Marie Curie fellowship. F.D.B. was supported by an ATIP/AVENIR-program starting grant and by ERC–SG no. 311159, CNRS, INSERM, and Institut Curie core funding. We thank the Developmental Biology Curie imaging facility (PCT-IBiSAiBD, Paris, France, UMR3215/U934), member of the France-BioImaging national research infrastructure, for their help with microscopy. The Del Bene laboratory “Neural Circuits Development” is part of the Laboratoire d’Excellence (LABEX) entitled DEEP (ANR-11-LABX-0044) and of the École des Neurosciences de Paris Ile-de-France network. C.G. was supported by a postdoctoral fellowship from the Fondation pour la Recherche Médicale (FRM).

Received: September 22, 2014
Revised: July 20, 2015
Accepted: December 3, 2015
Published: January 21, 2016

REFERENCES

