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SUMMARY

Thermosensation provides crucial information, but
how temperature representation is transformed
from sensation to behavior is poorly understood.
Here, we report a preparation that allows control of
heat delivery to zebrafish larvae while monitoring
motor output and imaging whole-brain calcium
signals, thereby uncovering algorithmic and compu-
tational rules that couple dynamics of heat modula-
tion, neural activity and swimming behavior. This
approach identifies a critical step in the transforma-
tion of temperature representation between the
sensory trigeminal ganglia and the hindbrain: A sim-
ple sustained trigeminal stimulus representation is
transformed into a representation of absolute tem-
perature as well as temperature changes in the hind-
brain that explains the observed motor output. An
activity constrained dynamic circuit model captures
the most prominent aspects of these sensori-motor
transformations and predicts both behavior and neu-
ral activity in response to novel heat stimuli. These
findings provide the first algorithmic description of
heat processing from sensory input to behavioral
output.

INTRODUCTION

Environmental temperature strongly influences human behavior

such as seeking shelter or wearing warm clothes in the cold.

Similarly, most animal species have a narrow temperature range

in which their metabolism functions optimally and have evolved

behavioral strategies to seek out these preferred temperatures.

Navigational strategies that lead animals to preferred tempera-

tureswithin a heat gradient have been studied in diverse species,

such as E. coli, C. elegans, zebrafish, and mouse (Hedgecock
and Russell, 1975; Maeda et al., 1976; Murakami and Kinoshita,

1977).

At the molecular level, how animals sense temperature is well

understood. A large group of transient receptor potential (Trp)

channels are gated by temperature, and different Trp channels

tile the temperature space from noxious cold to noxious heat

(Caterina et al., 1997; Julius and Basbaum, 2001; Schepers

and Ringkamp, 2010). In vertebrates, neurons expressing these

channels are concentrated in the sensory trigeminal ganglia,

innervating the face, as well as in the dorsal root ganglia, from

which they detect stimuli across the trunk and tail (Erzurumlu

et al., 2006; Schepers and Ringkamp, 2010).

Like other sensory stimuli, temperature has to be encoded and

represented by neural activity in primary sensory neurons and

subsequently needs to be filtered and processed to extract the

information relevant for behavioral responses. Especially at the

periphery, circuit studies have begun to elucidate how nervous

systems encode temperature. For example, in C. elegans, the

AFD neuron is specifically tuned to detect changes in tempera-

ture via response adaptation (Clark et al., 2006). This strategy

is thought to provide information about temperature gradient

direction aiding in navigation (Clark et al., 2007). In Drosophila,

hot- and cold-sensitive neurons in the antenna form topographic

projections in the brain (Gallio et al., 2011), and downstream

thermosensory projection neurons that can be subdivided into

‘‘ON’’ and ‘‘OFF’’ classes have been implicated in heat avoid-

ance behavior (Frank et al., 2015; Liu et al., 2015). In the mouse

trigeminal ganglion, thermosensory neurons tile temperature

space, with different neurons responding to different levels of

cold or warmth (Yarmolinsky et al., 2016). Overall, most thermo-

sensory neurons represent noxious temperatures, while encod-

ing of ambient temperature is sparse (Yarmolinsky et al., 2016).

Just like the aforementioned second-order projection neurons

in Drosophila, second-order temperature-modulated neurons

in the mouse spinal cord can be grouped into ON and OFF types

(Ran et al., 2016). While warm-responsive neurons exclusively

show sustained responses, cold-sensitive spinal cord neurons

are generally fast adapting (Ran et al., 2016). Despite these ad-

vances at the cellular and molecular level, it remains unclear
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Figure 1. A Paradigm to Probe Heat Percep-

tion in Larval Zebrafish

(A) Setup schematic. Green plane depicts example

imaging plane and inset shows habenulae imaged in

one experiment. The activity of the green nucleus is

depicted in (B).

(B) Top shows the delivered laser power in each

repeat (black line) as well as the repeat-average

temperature experienced by the fish (red line).

Middle depicts repeat averaged calcium activity of

one example ON cell. Bottom depicts example tail-

trace during one repeat of one imaging plane.

(C) Behavior raster plot (summed across repeats) of

1,200 planes imaged across 40 fish. Blue ticks

identify the start of swim bouts, orange ticks the

start of flick bouts. Stimulus depicted on top for

reference.

(D) Histogram of directional bias (see STAR

Methods) of tail movement across all bouts in 40

fish. Coloring and dashed lines reflect cutoff be-

tween ‘‘flick’’ and ‘‘swim’’ categories. Inset shows

example tail traces during flick to the left (top), swim

(middle), and flick to the right (bottom).

(E) Heatmap of trial-averaged activity of all heat-

responsive cells across all experiments. Cells are

sorted according to ON versus OFF criteria. Color

scale indicates DF/F0.

(F) Average bout frequencies of flick (orange line)

and swim (blue line) type bouts. The stimulus is

depicted on top for reference. Dashed gray lines

indicate start of temperature decline to reveal off

response in swims.

See also Figure S1.
how a temperature percept arises in the brain and how

thermosensory activity ultimately leads to behavior. Thus, a

description and analysis of the pathways that link temperature

sensing to computational processes and behavioral outputs is

lacking.

We recently investigated how temperature influences zebra-

fish swimming behavior. We found that zebrafish are sensitive

to absolute levels as well as to changes in temperature and

that different behavioral outputs—such as turning versus straight

swims—are differentially influenced by ON- and OFF-responsive

channels (Haesemeyer et al., 2015). In the current study, we

establish brain-wide functional calcium imaging with heat stimu-

lation and behavioral recording to identify heat processing

centers throughout the larval zebrafish brain. We find that tem-

perature information is represented in ON and OFF channels,

and we identify different cell types that represent temperature

on different timescales: some are slow modulated and others

are fast adapting. In particular, cell types differ between anatom-

ical regions, with the hindbrain favoring representation on faster

timescales while some forebrain regions, including the preoptic

area, represent temperature on longer timescales. Importantly,
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we identify a critical step in the sensori-

motor transformations: trigeminal sensory

neurons represent temperature exclu-

sively using sustained ON and OFF cells,

whereas activity diversifies in a trigeminal
target area in the hindbrain. There, cell types with transient

responses arise and form a more detailed representation of

temperature stimulus features. Strikingly, this response type

diversification is required to explain the behavior. We used these

data to derive a realistic circuit model that captures the most

important computations underlying the sensori-motor transfor-

mations. The circuit model not only captures neural activity

transformations but also predicts behavior and neural activity

in response to novel stimuli.

RESULTS

A System for Brain-wide Identification of Temperature-
Encoding Cells
To observe neuronal activity and behavior in response to tem-

perature stimuli, we used a fiber-coupled infrared laser delivering

precise heat stimuli to a head-embedded larval zebrafish under

a custom-built 2-photon microscope (Figures 1A and 1B). By

freeing the tail of the larva, we could monitor behavior under

infrared illumination at 100 Hz while simultaneously recording

calcium activity at �2.5 Hz.



Since changes in temperature led to expansion movements in

our preparation, we developed an online z-stabilization tech-

nique that allowed imaging calcium responses without stimulus

induced artifacts (Figures S1A–S1C).We imaged calcium activity

in larval zebrafish pan-neuronally expressing the nuclear indica-

tor H2B-GCaMP-6 s (Freeman et al., 2014). To study behavioral

and neuronal heat responses, a heat stimulus consisting of both

a sinusoidal temperature modulation and discrete temperature

steps was presented to the larvae. We used a thermistor in

place of the fish to calibrate our stimulus (Figure 1B; see STAR

Methods). With a range of 24�C to 29�C, the heat stimulus stayed

below the noxious temperature threshold of �34�C. We probed

each imaging plane with three stimulus trials and imaged 30

planes separated by 2.5 mm in each fish, achieving 3-fold

coverage of the whole brain across 40 animals.

Across trials, the stimulus reliably induced behavior in all

tested fish (Figure 1C). As seen in Figure 1B, larval zebrafish

do not swim continuously but perform swim bouts at discrete

intervals (Budick and O’Malley, 2000), and they can display

bouts of different speeds and turn magnitudes. In our prepara-

tion, we noticed a prominent class of bouts that were charac-

terized by unilateral flicks of the tail. We therefore used tail dy-

namics to divide the behavior into undulating ‘‘swims’’ and

unilateral ‘‘flicks,’’ which likely correspond to near-stationary

turns in freely swimming behavior (Figure 1D). Importantly,

larval zebrafish performed these two behaviors with different

dynamics relative to the temperature stimulus. While flick

and swim rates rose similarly as temperature increased, swim

rates stayed elevated for a longer time after the temperature

decreased (Figure 1F). This is likely part of an adaptive strategy,

favoring straighter movements over in-place turns when tem-

perature decreases.

We anatomically segmented individual cell nuclei and used

spectral clustering (see STAR Methods) to extract stimulus-

evoked activity in an unbiased manner across the whole brain.

Imaging a total of 40 fish identified 24,947 responsive cells

comprising around 4% of all imaged neurons. The neuronal re-

sponses broadly fell into two classes: ON-responsive cells,

which are excited by increases in temperature, and OFF-type

cells, which are inhibited by temperature or show rebound exci-

tation when temperature decreases (Figures 1E and S1D–S1D’’).

Shuffling data with respect to the stimulus reduced the number

of identified cells to fewer than 5%of the original set (Figure S1E).

In control fish expressing an anatomical indicator (red fluores-

cent protein), our clustering approach did not reveal any fluores-

cence changes resembling our stimulus (Figures S1F and S1G).

To compare trial-to-trial variability across heat-modulated

cells and behavior, we computed correlations between trial ac-

tivity and behavior. While heat-modulated cells very reliably re-

ported the stimulus with trial-to-trial correlations similar to a

shot-noise model (Figure S1H), individual swim-bout generation

was highly variable across trials (Figure S1I). Notably, behavioral

variability across trials within fish was very similar to variability

across fish (Figure S1I).

To compare activity and behavior across stimulus modalities,

we imaged a second set of fish presenting a modified heat stim-

ulus followed by an acoustic tap (Figures S1J–S1L). These taps

elicited escape swims that were in most cases distinct from
heat-induced unilateral flicks and generally classified as swims,

consistent with their bilateral tail dynamics (Lacoste et al., 2015;

Figure S1K). In summary, the head-embedded preparation

enabled characterization of behavioral and neural dynamics

across the whole brain while the animal was exposed to temper-

ature and acoustic stimuli.

Heat-Related Activity Is Widespread but Anatomically
Clustered throughout the Brain
Having established a preparation to monitor temperature-modu-

lated neuronal activity, we set out to map heat processing

centers throughout the larval zebrafish brain. To this end, we

registered all imaging data onto a common reference brain

(see STAR Methods; Portugues et al., 2014).

Neurons with heat-modulated activity could be identified

throughout most of the brain prominently clustering in specific

regions (Figures 2A–2D). In the sensory trigeminal ganglia,

heat-sensing neurons occupied a specific caudal subdomain

(Figure 2C, right insets) that was distinct from a more rostral

location of tap-responsive cells identified in our heat and tap

experiments (data not shown). In the hindbrain, heat cells

formed a cluster in the dorsal cerebellum; another prominent

cluster could be identified in rhombomeres 5/6 (Rh 5/6), which

receive synaptic input from trigeminal fibers carrying informa-

tion about aversive stimuli (Pan et al., 2012). The forebrain dis-

played widespread heat-related activity, with large fractions of

heat-responsive cells in the sub-pallium as well as the right

habenula (Figures 2A, 2B, and 2E). Furthermore, clusters of

heat-responsive cells were identified in the pre-optic area,

which has been implicated in temperature sensation and ther-

moregulation in mammals and reptiles (Cabanac et al., 1967;

Dean and Boulant, 1989). Brain regions with heat-modulated

activity generally contained both ON- and OFF-type cells

with varying proportions (Figures 2C–2E), and with the excep-

tion of the cerebellum, most regions harbored more ON- than

OFF-type cells.

After identifying heat-processing centers, we tested whether

heat-modulated cells and their ON and OFF subtypes cluster

in the brain or if they are instead distributed in a randommanner.

Comparing nearest-neighbor distances revealed that heat-

modulated cells indeed clustered together and that this was

maintained across subtypes such as ON and OFF cells as well

(Figure S2A). This clustering indicates that functional subdivi-

sions are reflected in the anatomical location of cell types.

Notably, shuffling cell identities removed all region-specific cell

and type clustering (Figures S2B–S2E). This confirms that the

observed structure in the data is indeed a feature of the brain

and does not simply arise by chance.

After the anatomical characterization, we wanted to know

whether heat-modulated neurons likely encode heat information

specifically or if some neurons generalize across modalities. To

distinguish between these possibilities, we used the stimulus

set combining temperature changes and aversive acoustic

taps (Figure S1J) and identified cells that only respond to either

the temperature or tap stimulus alone (unimodal cells) as well

as cells that respond to both (multimodal cells) (Figure S2F).

Importantly, the sensory trigeminal ganglia contained only unim-

odal cells for tap or for heat, a property which was also largely
Neuron 98, 817–831, May 16, 2018 819
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Figure 2. Heat-Related Activity Is Wide-

spread across the Brain

(A and B) Fraction of heat-responsive cells within

selected brain regions. Color scale indicates per-

centage of heat-sensitive cells within each region.

Grey cells indicate brain regions that were not

segmented. Scale bars, 100 mm. Pl.: pallium, SbP.:

subpallium, Hab.: habenula, Crb.: cerebellum,

Rh5/6: hindbrain rhombomeres 5 and 6, POA: pre-

optic area, TG L/R: left/right trigeminal ganglion.

Colored lines on top delineate major subdivisions of

the brain, FB: forebrain, MB: midbrain, HB: hind-

brain. Note that trigeminal ganglia are not to scale.

(A) Dorsal view of the brain, anterior left, left side

bottom.

(B) Side view of left hemisphere, anterior left, dorsal

top.

(C) Distribution of ON (green) and OFF (magenta)

cells across the zebrafish brain (top projection). The

projection shows all cells identified across 30 indi-

vidual experiments which have been registered onto

a common reference brain. Scale bar, 100 mm,

anterior left, left side bottom. Black outlines mark

approximate location of trigeminal ganglia which are

shown in insets to the right (TG L/R, left/right tri-

geminal ganglion). Each trigeminal ganglion depicts

cells across five fish registered onto a common

reference ganglion. Scale bar, 50 mm, anterior left.

(D) Side view of the brain in (C); only cells in the left

hemisphere are depicted. Scale bar, 100 mm, ante-

rior left, dorsal top.

(E) Fraction of heat ON cells (green) and heat OFF

cells (magenta) in select brain regions.

(F) For regions that were imaged in heat and tap

experiments, the fraction of stimulus-responsive

cells that only responded to the heat stimulus (red),

cells that only responded to the tap stimulus (blue)

and multimodal cells that responded to both heat

and tap (purple).

(G and G’) Effect of ablating one trigeminal ganglion

on the fraction of heat-responsive neurons in each

brain hemisphere in Rh 5/6 (G) and the cerebellum

(G’) in three individual fish. Black dots show fraction

of heat-responsive cells before and red dots after

ablation. * = p < 0.05, rank-sum test.

(H) Fraction of pre-ablation heat-responsive cells

remaining after ablation across Rh 5/6 and the cer-

ebellum. Bar indicates average with bootstrap

standard error across six hemispheres. Orange

dots indicate ipsilateral effect, red dots indicate

contralateral.

See also Figure S2.
reflected by cells in the hindbrain (Figure 2F, blue and red). While

a much larger fraction of trigeminal cells responded to the strong

tap stimulus than temperature, this distribution reversed in the

hindbrain. Indeed, mechano-sensory islet1-expressing cells in

the trigeminal do not form extensive arborizations in Rh 5/6,

which could explain this difference (Pan et al., 2012). The fore-

brain, on the other hand, contained a significant fraction of

multimodal cells, and taps were largely represented by these.

Especially in the habenula, tap-responsive cells were almost

exclusively multimodal, which suggests that taps are not en-

coded there with independent negative valence (Figure 2F).
820 Neuron 98, 817–831, May 16, 2018
To test the role of the trigeminal ganglia in temperature sensa-

tion, we imaged the hindbrain, subsequently ablated one trigem-

inal ganglion, and imaged the same region again. As expected,

this unilateral ablation revealed a significant reduction in heat-

modulated cells in Rh 5/6 (Figure 2G). Interestingly, even though

the trigeminal ganglion only innervates the ipsilateral hindbrain

(Pan et al., 2012), active cells were reduced both ipsilateral

and contralateral to the ablation (Figure 2G). This indicates a

crossing of information in the hindbrain. The reduction in the

amount of heat-modulated cells in the cerebellum was smaller

than in Rh 5/6 (Figures 2G’ and 2H), which points to a non-linear
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Figure 3. Motor Cells Can Be Separated Ac-

cording to Behavior and Stimulus Conditions

(A) Example behavioral regressors (black) and activity

trace of one correlated cell. Top: Cell encoding all

motor events in a plane (orange); middle: cell en-

coding left flicks in a plane (purple); bottom: cell en-

coding swims in a plane (brown). Numbers indicate

correlation coefficient.

(B) Clustered heatmap of correlations of motor-cell

activity withmotor regressors, including the following

events: All motor: all motor events of a given plane;

Flicks: only flicks in a plane; Right/left flicks: only

included right/left flicks; Swims: only swims included;

Evoked motor: only motor events while the heat

stimulus was on were included; Spontaneous motor:

only motor events while the heat stimulus was off

were included. Cells are only assigned to a more

specialized motor cluster if the correlation to the

specialized regressor is significantly higher than to

the general regressor (p < 0.01, bootstrap hypothesis

test). all-motor (AM): N = 5049 cells; flicks (F): N =

420; flick-right (FR): N = 319; flick-left (FL): N = 298;

swims (S): N = 1338; evoked-motor (EVK): N = 950;

spontaneous-motor (SPNT): N = 763. 30 fish.

(C and D) Fraction of motor correlated cells within

selected brain regions. Color scale indicates per-

centage of motor-correlated cells within each region.

Scale bars, 100 mm. Pl.: pallium, Hab.: habenula,

ncMLF: nucleus of the medial longitudinal fascicle,

Crb.: cerebellum, Ant. HB: anterior hindbrain. Grey

cells indicate brain regions that were not segmented.

(C) Dorsal view of the brain, anterior left, left side

bottom; (D) side view of left hemisphere, anterior left,

dorsal top.

(E) Quantification of percentage of motor correlated

cells in select brain regions. Red bars: forebrain;

purple: midbrain; blue: hindbrain.

(F) Distribution of flick-right (green) and flick-left

(purple) cells, top projection. Anterior left, scale bar,

100 mm

G) Distribution of evoked-motor (red) and sponta-

neous-motor (blue) cells, top projection. Anterior left,

scale bar, 100 mm.

Grey cells in (F)–(G) are non-motor-related cells rep-

resenting brain outline.

See also Figure S3.
flow of sensory information through the hindbrain to the cere-

bellum and highlights a potential compensatory function of cere-

bellar circuitry.

In summary, the data demonstrate that heat-evoked activity is

widespread throughout the brain, but heat-responsive neurons

nonetheless cluster into specific regions such as the posterior

trigeminal ganglion and rhombomeres 5 and 6 of the hindbrain

or the cerebellum. Furthermore, while most neurons seem to

be modality specific, especially in the forebrain, cell types arise

that have a mixed representation of aversive stimuli.

Motor Cells Encode Swim Types and Are Stimulus
Dependent
After pinpointing neurons and brain regions processing temper-

ature stimuli, we sought to identify neurons with motor-corre-

lated activity. To this end, we used the bout starts in each

imaging plane (Figure 1C) to derive behavioral regressors by
convolution with a calcium response kernel (Miri et al., 2011).

These regressors represent the expected calcium response

in a cell encoding the behavior and can therefore be used to

probe the brain for cells showing activity that is strongly corre-

lated (r R 0.6) to motor output (Figure 3A). Due to the high

trial-to-trial variability of behavior (Figure S1I), these motor re-

gressors are distinct from expected sensory responses; this

large variability is also reflected in trial-to-trial variation of motor

cell activity (Figure S1H).

We generated regressors encoding all motor events (Fig-

ure 3A, ‘‘AM’’) as well as regressors encoding the two subsets

of motor events, flicks (‘‘FL’’) and swims (‘‘S’’). Correlating activ-

ity across the whole brain to these regressors revealed a large

representation of all motor events aswell as neurons significantly

more correlated to behavior-specific regressors such as either

flicks to the right and left or swims (Figure 3B, p < 0.01, bootstrap

hypothesis test).
Neuron 98, 817–831, May 16, 2018 821



Either motor events could be controlled by a single set of

pre-motor cells or distinct stimulus modalities could influence

different pre-motor pools. We therefore probed the brain for cells

that encoded motor events in a stimulus-dependent manner.

Namely, we created regressors that only reported motor output

while the stimulus is being delivered or, conversely, during rest,

while the stimulus is off. These regressors could indeed recover

cells that encode behavior contingent on the stimulus presenta-

tion, either ‘‘evoked-motor’’ or ‘‘spontaneous-motor’’ cells (Fig-

ure 3B, ‘‘EVK’’ and ‘‘SPNT’’ respectively).

As expected, while ‘‘all-motor’’ cells were equally responsive

during left and right flicks, ‘‘flick-left’’ and ‘‘flick-right’’ cells re-

sponded almost exclusively during left and right flicks, respec-

tively (Figure S3A). Bout-triggered averages also revealed that

‘‘all-motor’’ cells respond with equal strength irrespective of

the stimulus, while ‘‘evoked-motor’’ and ‘‘spontaneous-motor’’

cells showed a much stronger response in the presence or

absence of the stimulus, respectively (Figure S3B). Shuffling

the activity data with respect to the behavior reduced the number

of identified cells to less than 1.8% (Figures S3C and S3D).

The anterior hindbrain and cerebellum contained prominent

clusters of motor-related cells (Figures 3C, 3D, S3E, and S3F).

Notably, the trigeminal ganglia also harbored a fewmotor-corre-

lated cells in a rostral regionmostly distinct from the caudal heat-

sensitive domain (Figure S3E). We also identified a cluster of

motor cells in the nucleus of the medial longitudinal fascicle

(ncMLF), which has been implicated in controlling swim speed

(Severi et al., 2014; Figures 3C and 3D). While a sizeable fraction

of hindbrain and ncMLF neurons encoded motor behavior, there

were only few such neurons in the forebrain (Figure 3E). Cells

encoding flicks to the left versus right were notably absent

from the ncMLF and showed a lateralized distribution in the

hindbrain, where more cells encoded behavior in an ipsilateral

manner (Figure 3F). Evoked-motor and spontaneous-motor

cells, on the other hand, were largely dispersed throughout

motor-related brain regions but did cluster spatially within those

regions (Figure 3G).

In summary, behavioral subtypes and stimulus contingencies

are encoded by separate pools of motor cells that are largely

confined to regions previously described as encoding motor ac-

tivity (Dunn et al., 2016; Naumann et al., 2016).

Activity Decorrelation in the Hindbrain Is Required to
Explain Behavior
After the identification of heat- and motor-encoding cells in the

brain, we wanted to know how well temperature-related activity

in specific regions can explain the observed swim and flick be-

haviors. To this end, we partially annotated our reference brain

with Z-Brain annotations (Randlett et al., 2015). This allowed ex-

tracting sensory-related activity using spectral clustering for

cells in specific regions, effectively capturing more diversity

than brain-wide clustering (see STARMethods). This analysis re-

vealed that stimulus representation in the sensory trigeminal

neurons is simple, consisting of one ON and one OFF cell type

tracking the stimulus with slow dynamics (Figure 4A). Further-

more, the activity of both cell types was highly anti-correlated

(Figure 4A’), indicating that they have very similar stimulus en-

coding, albeit with opposite signs.
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We next asked whether a simple linear regression model using

the activity present in the trigeminal sensory ganglion could

explain the observed flick and swim rates. Activity in the trigem-

inal was indeed sufficient to explain flick-type bout generation,

capturing more than 90% of the variance in this behavior (Fig-

ure 4A’’ left), but it was considerably worse in explaining swims,

capturing less than 70% of the variance (Figure 4A’’ right).

In the Rh 5/6 region of the hindbrain, a trigeminal target area

(Pan et al., 2012), activity profiles became considerably more

diverse with the presence of two distinct ON and three distinct

OFF cell types (Figure 4B). Importantly, both transient ‘‘fast-

ON’’ and transient ‘‘fast-OFF’’ activity arose in this region, while

another set of ‘‘slow-ON’’ and ‘‘slow-OFF’’ neurons mostly re-

flected trigeminal activity (Figure 4B). These new response types

change the stimulus representation from exclusively encoding

temperature levels to also representing the direction of temper-

ature change. The distinct temporal dynamics furthermore re-

sulted in a decorrelation of activity at this first relay station (Fig-

ure 4B’). Remarkably, combining the activity of just two response

types—the trigeminal-like slow-ON and a newly formed

Fast-OFF type—was sufficient to explain both flick and swim

behavior, capturing 90% of the variance in both behaviors (Fig-

ure 4B’’). This suggests that the observed response diversifica-

tion underlies the generation of behavior.

Analyzing activity in other brain regions revealed differences in

stimulus representation throughout the brain (Figures S4A–S4E).

Temperature-related activity in the cerebellum followed different

dynamics than activity in Rh 5/6, and the representation of stim-

ulus amplitude was strongly reduced in this region (Figure S4A).

The forebrain, especially the pallium (Figure S4C) and pre-optic

area (Figure S4E), contained activity types that evolve on consid-

erably slower timescales than neurons within the hindbrain (Fig-

ures 4B and S4A). This might indicate a role of forebrain areas in

longer timescale integration of stimuli, potentially related to the

setting of behavioral states rather than generation of short-time-

scale behavior.

To describe the amount of information region-specific activity

carries about the behavior, we analyzed mutual information be-

tween activity in each region and the flick and swim behavior

rates. Mutual information between all activity in a given region

and the observed motor output reflected the results of the

linear model (Figure 4C). While there was a modest increase

in mutual information between considering only the sensory

stimulus or activity in the trigeminal ganglion, activity in Rh

5/6 of the hindbrain contained as much information about

behavior as activity in any other region except for the motor

cells themselves (Figure 4C). To further analyze the distribution

of information, we combined heat-modulated activity across all

regions. Performing principal component analysis revealed that

the first five components capture more than 95% of the total

variance in heat-modulated activity (Figures S4F and S4G).

Together, these components had mutual information of 3.8

bits with the motor output, an increase of only 4% over Rh

5/6 alone. Therefore, our preferred model is that other brain

areas—like the pallium, subpallium, or cerebellum—are not

directly involved in the described behavior but rather monitor

the information for higher-order purposes. Mutual information

of motor cells with the motor output is smaller than the entropy



0 30 60 90 120 150
Time [s]

0.0
0.5

1.0

1.5
2.0

2.5

∆F
/F

0

0.57

0.91 0.91

0.44

0.68 0.68

0.0

0.2

0.4

0.6

0.8

1.0 Linear prediction R
2

Flicks Swims

0

1

2

3

4

0 30 60 90 120 150
Time [s]

∆F
/F

0

0.4

0.5 0.6

0.1 0.5 0.6

0.7 0.9 0.7 0.7

0.1 0.8 0.4 0.5 0.4

0.1

0.4 0.4

0.4 0.7 0.7

0.4 0.9 0.5 0.4

0.0 0.6 0.6 0.5 0.2

0.0

0.2

0.4

0.6

0.8

1.0 Linear prediction R
2

A

B

C

A’ A’’

B’ B’’

0

1

2

3

4

M
ut

ua
l i

nf
or

m
at

io
n 

[b
its

]

Stimulus

Trigeminal

Rh5/6
Rh2

Cerebellum

Habenula

Pallium

SubPallium

POA
Motor cells

Motor output

3.65

1.59

4.65

Stimulus

D

1 -0.82

1

−0.8

−0.4

0.0

0.4

0.8

C
orrelation (r)

1 0.68 -0.46 -0.51 -0.67

1 -0.16 -0.7 -0.8

1 -0.27 0.28

1 0.54

1 −0.8

−0.4

0.0

0.4

0.8
C

orrelation (r)

Rh 5/6

TG

Fast
OFF

Slow
OFF

Deld.
OFF

Slow
ONFast

ON

ON

OFF

ON

OFF

ON

OFF

Fast
ON

Fast
OFF

Deld.
OFF

Slow
OFF

Slow
ON

Fast
ON

Fast
OFF

Deld.
OFF

Slow
OFF

Slow
ON

Figure 4. Diversity of Heat Responses Increases in the Hindbrain

(A–A’’) Characterization of heat responses in the trigeminal ganglion.

(A) Response types extracted via spectral clustering; ON cells orange (N = 98 cells), OFF cells blue (N = 73 cells), across 10 fish. Thick lines indicate cell-average

activity; shading indicates bootstrap standard error.

(A’) Pairwise correlations of the response types to quantify similarity.

(A’’) Coefficient of determination (R2) for using one (diagonal) or up to two of the response types to predict flicks (left) or swims (right).

(B–B’’) Characterization of heat responses in the Rhombomere 5/6 region of the hindbrain.

(B) Response types extracted via spectral clustering. Fast-ON cells, red (N = 259 cells); slow-ON cells, orange (N = 265 cells); fast-OFF cells, green (N = 24 cells);

slow-OFF cells, blue (N = 55 cells); and delayed-OFF cells, brown (N = 92 cells), across 16 fish. Thick lines indicate cell-average activity; shading indicates

bootstrap standard error.

(B’) Pairwise correlations of the response types to quantify similarity.

(B’’) Coefficient of determination (R2) for using one (diagonal) or up to two of the response types to predict flicks (left) or swims (right). A linearmodel combining just

two activity types was chosen for direct comparison with the trigeminal activity types.

(C) Mutual information with the motor output by knowing the stimulus (hollow bar) or all heat-related activity in the given brain regions (gray trigeminal ganglion,

blue hindbrain, red forebrain) or motor cell activity (orange bar). The filled black bar quantifies the entropy in the motor output itself. The height of the gray box

indicates mutual information in Rh 5/6 and marks regions not included in the circuit model.

(D) Schematic of response diversification between detection in the trigeminal and cells in Rh 5/6 of the hindbrain, followed by activation of motor cells and finally

the generation of motor output (example bout traces on right). Colors indicate response types. The black arrow connecting both hemispheres in Rh 5/6 indicates

flow of information suggested by the unilateral trigeminal ablations.

See also Figure S4.
of the behavior itself (Figure 4C), a likely consequence of

recording behavior in each imaging plane while not all planes

contained motor cells. Shuffling the activity data reduces the
number of cells identified through clustering to less than 3%

in each region (Figure S4H), arguing that the recovered cell

types are a true feature of stimulus representation.
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In summary, the data indicate that activity transformation in a

trigeminal target area (Figure 4D) is an important step in the

observed sensori-motor transformations: this transformation is

necessary to explain the behavioral output, while later stimulus

transformations do not seem to increase information about the

motor output (Figure 4C).

A Dynamic Circuit Model Captures Activity
Transformations and Generation of Behavior
To better understand and quantify the sensori-motor transfor-

mations underlying heat-evoked swimming behavior, we sought

to build a dynamic circuit model that is constrained by the

behavior and the observed neuronal activity. This model de-

scribes four independent, sequential transformations: first, sen-

sory stimulus to activity in the trigeminal; second, activity in the

trigeminal to activity in Rh 5/6; third, the transformation from

Rh 5/6 to motor cells; and fourth, the generation of behavior

given the activity in the motor cells (Figure 5). Since motor cell

firing and timing of individual swim bouts was highly variable

(Figures S1H and S1I), our model predicts rates of motor cell

firing and behavior, respectively, rather than individual events.

The transformation from sensory stimulus to trigeminal activity

is a dynamic process relying on temporal processing. We there-

fore fit a model that combines linear multiplication of the sensory

input with convolution by a temporal filter (Figure 5A). Both the

multiplicative term and filter parameters were fit using Markov-

chain-Monte-Carlo sampling, obtaining confidence intervals on

the parameters in the process (Hastings, 1970; see STAR

Methods). Since stimulus encoding relied on a non-linear trans-

formation, a cubic non-linearity accounted for differences in

mapping between stimulus strength and neuronal activity (Fig-

ure S5A and S5B). This approach allowed explaining the

observed ON- and OFF-type activity in the trigeminal ganglion

in terms of the sensory stimulus, as evidenced by the close juxta-

position of the fits and true activity (Figures 5A1 and 5A2). As ex-

pected, the linear factors of themodel demonstrate an activation

of the ON type and an inhibition of the OFF type by the sensory

stimulus. And at this stage, a linear filter resembling a nuclear

calcium indicator kernel (Kawashima et al., 2016) is sufficient

to capture the transformation from stimulus to activity (Figures

5A1 and A2).

Our previous analysis indicated that the most important trans-

formation occurs in Rh 5/6 of the hindbrain. To explain the

response types in this region in terms of trigeminal neuron activ-

ity, we employed the same approach: a linear combination of tri-

geminal activity followed by convolution with a filter and an

output nonlinearity (Figures 5B and S5C–S5G). Two cell types

in this hindbrain region, slow-ON and slow-OFF, were similar

to the trigeminal cell types. The slow-ON type has slightly faster

dynamics than the trigeminal ON cells, as evidenced by the

adaptive component in its filter, and it is almost exclusively

driven by excitatory inputs from the trigeminal ON cells (Fig-

ure 5B1). We note that, since adaptive filters compute a deriva-

tive of their input, they are prone to increase noise. The long time-

scales observed in the filters could therefore reflect a mixture of

suppressing noise in the best fit (see Figure S5H for a simulation)

as well as true neuronal processes underlying adaptation and

bursting (Bean, 2007). The slow-OFF type is an almost direct
824 Neuron 98, 817–831, May 16, 2018
copy of trigeminal activity, as evidenced by a filter that is essen-

tially a delta function (Figure 5B2). The three other cell types in Rh

5/6 critically relied on inhibitory inputs (Figures 5B3–5B5). While

trigeminal neurons express a variety of neurotransmitters, they

are largely glutamatergic (Lazarov, 2002). Imaging activity in

Rh 5/6 in the presence of transgenic glutamatergic and gabaer-

gic labels revealed that both the slow-ON and slow-OFF cell

types consist of both excitatory and inhibitory neurons (Fig-

ure S5I). We therefore used the slow-ON and slow-OFF types

in the model to provide the required inhibition instead of the tri-

geminal inputs. Both the newly arising fast-ON and fast-OFF

types required inhibition by slow-OFF cells, albeit to differing de-

grees. Furthermore, as suggested from their activity profiles,

both their filters signal strong adaptation (Figures 5B3 and

5B4). The last activity type, termed a ‘‘delayed-OFF’’ type, as it

had fast kinetics but started to respond after the fast-OFF cells,

relied on inhibition by the slow-ON type. The linear filter of this

type potentially hints at a mixture of integration and differentia-

tion, which would also be suggested by the activity profile itself

(Figure 5B5). To test the importance of temporal filtering and

hence the dynamic structure of our model, we fit an alternative

model in which no linear filters were applied for cell types in Rh

5/6. As expected, such a model still explains the activity of

slow-ON and -OFF types well, whereas the activity of the

fast-ON and -OFF types could not be recreated from trigeminal

inputs without filtering (Figure S5J). This indicates that temporal

filtering of activity is a critical step in creating important response

types observed in Rh 5/6.

Since motor cells in the brain did not track the stimulus itself

but, much like the behavior, had a probabilistic chance of firing

depending on stimulus strength, we used a simple linear rate-

coding model for the transformation from heat-modulated hind-

brain activity to activity rates in the motor cells (Figure 5C).

Namely, linear combinations of activity in Rh 5/6 cell types ex-

plained the activity of each identified motor cell type (Figure 3).

Notably, all heat-modulated cell types in Rh 5/6 contribute to

the activity of one or multiple motor cell types with varying com-

binations of activating and inhibiting influences. This is consis-

tent with the mix of excitatory and inhibitory neurons revealed

for each cell type in this region (Figures 5C1–5C5 and S5I).

Most motor cell types are activated by the slow-ON type, with

the expected exception of spontaneous-motor cells, which

receive strong excitation from slow-OFF cells almost exclusively

(Figure 5C5). This paradoxical control of spontaneous behavior

by a stimulus-driven cell type is necessary to explain their lack

of activity during stimulation. Interestingly, ‘‘swim’’ cells receive

their strongest excitation from the fast-OFFcell type (Figure 5C3),

consistent with the requirement of this cell type in explaining

swimming behavior via a simple linear model (Figure 4B’’).

The last stage of the model linearly links motor cell output to

the observed swim and flick behavior (Figure 5D). Both of these

behaviors are strongly activated by the all-motor and evoked-

motor cells. Flick cells, overall, have a weak contribution to

both behaviors; however, as expected, while they inhibit swims,

they activate flicks. Swim cells, on the other hand, have a strong

contribution to swims, but do not influence flicks (Figure 5D).

In summary, we could derive a realistic dynamic circuit model

that can explain the observed transformations in activity from
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sensation to behavioral output and that makes clear and testable

predictions about the underlying circuit.

The Circuit Model Can Predict Behavior and Neuronal
Responses to Novel Stimuli
In the dynamic circuit model of the sensori-motor transforma-

tions (Figure 6A), each stage of the model was fit independently.

Hence, errors could accumulate across the model, preventing

prediction of behavioral output in response to sensory input.

Therefore, as a first test of the model, we tried to predict the

behavioral output of the experiments that were used to fit the

model given the sensory input. Both the rates of swims and

flicks were very well predicted by the circuit model (Figure 6B),

indicating that errors do not accumulate across the different

stages.

To test the generality of the model, we evaluated its predic-

tion in response to a sensory stimulus not used for fitting. To

this end, we used a heat stimulus with distinct temporal

dynamics consisting of three temperature steps and a ramp

followed by a faster oscillating sine wave (Figures 6A and

S6A). This stimulus served as a test input to our circuit model

to compare the prediction of flick and swim behavior to the

actual behavioral rates produced by fish during those experi-

ments. The model did very well in predicting behavior to

this novel stimulus, explaining close to 90% of the variance

in both flick and swim behaviors (Figure 6C). This indicates

that the model does generalize across stimuli of different

dynamics.

Encouraged by these results, we wondered if it might be

possible to identify the different heat-response types present

in Rh 5/6 in this experimental set using model predictions as re-

gressors. Probing activity using the model predictions indeed

recovered cells with correlated activity for each predictor (Fig-

ure S6B). Clustering cells by correlation into types recovered

type-average activity that matched the individual model predic-

tions to a large extent, as evidenced by the close juxtaposition of
Figure 5. A Dynamic Model of Sensori-motor Transformation during H

(A) Schematic of the first model stage relating sensory heat input to activity in the

used for fitting the model. Bottom is a schematic depiction of the influences of the

using the trigeminal ON cell type as an example.

(A1) Model prediction of trigeminal ON activity (orange) and measured activity (bl

(bottom right).

(A2) Model prediction of trigeminal OFF activity (blue) and measured activity (bla

(bottom right).

(B) Schematic of the secondmodel stage, which relates trigeminal output activity t

in the right column rely on indirect inhibition via the slow ON or slow OFF types.

(B1) Model prediction of slow-ON activity (orange) andmeasured activity (black) (le

the trigeminal ON (orange) and OFF (blue) cells (bottom right).

(B2–B5) Same as (B1), but for slow-OFF (B2), fast-ON (B3), fast-OFF (B4), and d

(C) Schematic of the third model stage relating output rates in the hindbrain unit

(C1) Scatterplots of actual versus predicted output rates of modeled all-motor acti

OFF (green), slow-OFF (blue), and delayed-OFF (brown) types.

(C2–C5) Same as (C1), but for flicks (C2), swims (C3), evoked-motor (C4) and sp

(D) Schematic of the last model stage relating output rates of the motor correlate

(D1) Scatterplots of actual versus predicted behavior rates of modeled swim outp

(purple), evoked-motor (red) and spontaneous-motor (blue) cells.

(D2) Same as (D1), but for predicted behavior rates of flick output.

Shading and error bars indicate 99% confidence intervals after sampling from th

See also Figure S5.
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predicted and cluster average activity (Figure 6D). Importantly,

the average activity profiles of the types matched expectations.

This can be seen by comparing average activity of fast-ON

with slow-ON types. Here, as in the other experiment, fast-ON

cells showed quicker onset responses followed by adaptation

compared to amore sustainedprofile in the slow type (Figure 6D).

The test stimulus set also uncovered that fast-OFF cells not only

increase their activity on temperature decline but seem to be

especially inhibited during temperature rises. This is revealed

by an increase in activity in this cell type before offset of the

sine stimulus but concomitant with a decrease in Fast-ON activ-

ity (around 100 s into the trial instead of 115 s) (Figure 6D). Addi-

tionally, we compared the relative abundance of cell types

recovered by the model prediction with the abundance of the

same cell types in the original experiments. This analysis re-

vealed a good agreement in relative abundance of cell types (Fig-

ure S6E), suggesting that the model prediction indeed recovered

the same set of hindbrain cells that were originally identified

(Figure 4B).

Interestingly, the prediction of swims and flicks depends to a

different extent on accurate representation of Rh 5/6 activity. Us-

ing the model without temporal filtering (Figure S5J), prediction

of flicks is nearly as good as for the full model, while the predic-

tion of swims is considerably worse for both stimuli, as evi-

denced by a clear drop in explained variance (Figures S6C and

S6D). This is in line with the ability to predict flicks purely based

on trigeminal activity (Figure 4A’’). As expected, this comparison

model performs much worse in identifying fast-ON and fast-OFF

cells in Rh 5/6 in response to the test stimulus than the full model

(Figure S6F).

In summary, we could demonstrate that our activity-con-

strained circuit model generalizes to novel stimuli and is able

to predict both behavioral output and intermediate neuronal ac-

tivity in this context. This argues that themodel accurately repre-

sents computations during sensori-motor transformations in

heat perception.
eat Perception

two trigeminal cell types. Red curve depicts sensory stimulus of experiments

individual components (linear factors, filter, nonlinearity) of the dynamic model
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Figure 6. The Model Predicts Behavioral and

Neural Activity in Response to Novel Stimuli

(A) Schematic of the full feedforward model. Colored

arrows depict the mixing of sensory input or activity

in a previous stage, with arrowheads indicating

excitatory and bars indicating inhibitory effects.

Opacity of arrows indicates the weight of a given

component in the fit.

(B) Prediction of swims (top) and flicks (bottom)

based on the model for the same experiments

that were used to fit the model. Colored lines repre-

sent prediction; black line is observed behavior

convolved with the calcium kernel. Stimulus de-

picted on top for reference.

(C) Prediction of swims (top) and flicks (bottom)

based on the sensory input delivered and motor

output observed during the heat and tap experi-

ments. Note that periods in which the behavior is

affected by the tap itself have been excluded from

the plot. Colored lines represent prediction; black

line is observed behavior convolved with the calcium

kernel. Stimulus depicted on top for reference.

(D) Cluster average activity (colored lines) of the

indicated types versus each model predicted re-

gressor (black line). Stimulus is depicted on top for

reference. The black arrowhead indicates timing of

the tap which was present in this test stimulus, but

which was not included in our modeling. Shading

indicates bootstrap standard error (N = 14 to

156 cells, across 12 fish).

See also Figure S6.
DISCUSSION

The sense of temperature is conserved from mammals (Mura-

kami and Kinoshita, 1977) to bacteria (Maeda et al., 1976), but

how information about environmental temperature is repre-

sented across the brain, especially in vertebrates, is largely un-

known. In this study, we combined a novel experimental para-

digm with theoretical modeling approaches to delineate the

circuits and computations that underlie the transformation from

temperature sensation to behavior.

A Brain-wide Atlas of Temperature-Modulated Activity
Previous work across animal species has provided important

insight into the cellular and molecular mechanisms and circuit
logic of temperature detection; however,

brain-wide analysis of temperature-modu-

lated activity is lacking. Here, we map-

ped neurons with heat-modulated activity

across a whole vertebrate brain and found

that the representation of temperature is

widespread and especially prominent in

the forebrain and hindbrain. As expected,

the trigeminal ganglion, a somatosensory

area, contains heat-sensitive neurons.

However, only a small fraction of cells in

the trigeminal ganglion responded to our

heat stimuli (Figure 2E), which were well

outside the noxious range (Figure 1B).
This is in line with previous reports in mice, in which only few tri-

geminal neurons detect innocuous warmth, while many respond

to noxious heat (Yarmolinsky et al., 2016). The rhombomere 5/6

region, which receives trigeminal projections (Pan et al., 2012),

contained prominent clusters of heat-modulated cells. Further-

more, responsive cells were aggregated in the dorsal cere-

bellum, in both habenulae, and in pallium and sub-pallium. This

likely indicates that temperature not only influences behavior

directly but also provides meaningful information for higher-or-

der processes controlled by the brain. Heat-modulated activity

in the pre-optic area hints at a potential functional conservation

of this structure, which is involved in the regulation of body tem-

perature in mammals (Boulant, 2000) and behavioral fever in

toads (Bicego and Branco, 2002).
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Functional Diversity of Temperature Encoding
Across the brain, we find that temperature is encoded by both

ON- and OFF-type cells. A separation of temperature coding

into ON and OFF cells also emerged as a common principle

from previous studies in flies (Frank et al., 2015; Liu et al.,

2015) and mice (Ran et al., 2016). Such a separation of sensory

coding into ON and OFF channels has been thought to aid in

coding efficiency (Gjorgjieva et al., 2014) and may serve to miti-

gate effects of correlated noise. Comparing heat-responsive cell

types across regions revealed clear differences in response dy-

namics. Sensory neurons in the trigeminal fall into two strongly

anti-correlated ON and OFF types with sustained responses. In

the hindbrain, on the other hand, more divergent response types

could be identified, including cells that showed strong adapta-

tion and are therefore most sensitive to temperature changes.

While we observe a combination of sustained and transient ON

and OFF cells in Rh 5/6 (Figure 4B), second-order neurons in

the mouse spinal cord represent warming exclusively with sus-

tained responses and cooling in a transient manner (Ran et al.,

2016). We haven’t explicitly presented cold stimuli in this study,

and it will be interesting to reveal whether our ON and OFF cells

simply reverse their behavior in response to cold stimuli or if

these are encoded by a different circuit altogether.

We believe that the other heat-encoding brain regions, like the

pallium and pre-optic area, serve primarily tomonitor heat stimuli

for higher-order purposes and do not directly contribute to the

sensori-motor transformation. For example, cell types harbored

in these regions seem to represent temperature on distinctly

slower timescales (Figures S4B–S4E), which could indicate

that these cells set long-term states rather than control behavior

itself.

Furthermore, by comparing neuronal responses to tempera-

ture stimuli as well as escape-inducing acoustic taps, we could

probe the logic of stimulus separation and integration. While

both stimulus modalities were clearly separated on the level of

the trigeminal ganglia and hindbrain, multimodal responses

emerged in forebrain areas (Figure 2F). This might indicate that

cell types arise in these higher-order structures, which encode

stimulus valence rather than the specific stimulus modality.

Stimulus and Behavior Separate Motor Activity across
the Brain
Using correlational analysis, we mapped motor-related activity

across the brain. Compared with the stimulus representation,

motor-related cells are considerably more localized. A large frac-

tion of motor cells is found in the anterior hindbrain as well as in

the cerebellum, slightly ventral of the stimulus-related cell clus-

ters. On the other hand, only a small fraction of cells in the fore-

brain displayed motor-correlated activity.

A simple criterion based on tail dynamics allowed subdividing

the head-embedded behavior into two broad classes, ‘‘swims’’

and ‘‘flicks.’’ Swims represent bouts which likely correspond to

straight swims and routine turns in freely swimming behavior,

while flicks are unilateral tail deflections that likely correspond

to strong, in-place turns. Mirroring the difference in behavioral

output, we find separate pools of cells that are correlated with

swims and flicks, indicating that separate pools of cells are

used to initiate these different behaviors at the level of the hind-
828 Neuron 98, 817–831, May 16, 2018
brain. This is similar to the subdivision of reticulo-spinal neurons

for straight swim or turn initiation (Huang et al., 2013). In line with

ipsilateral cells controlling directional turns (Orger et al., 2008),

cells encoding left flicks are more prominent in the left hemi-

sphere of the hindbrain and vice versa (70% of cells are ipsilat-

eral, Figure 3F).

We also identified stimulus-specific motor cells. ‘‘Evoked-mo-

tor’’ cells are activated almost exclusively during bouts in which

the stimulus laser is on, while ‘‘spontaneous-motor’’ cells are

mostly active during spontaneous bouts in the absence of our

heat stimulus (Figure S3B). This separation might underlie tem-

perature-induced changes in bout structure such as observed

increases in average bout speed caused by temperature in-

creases in freely swimming larval zebrafish (Haesemeyer et al.,

2015). That spontaneous and evoked behaviors are controlled

by separate pools of cells is in contrast to Aplysia, where

changes in distributed activity in the same pool of cells account

for differences in spontaneous and evoked behaviors (Wu et al.,

1994). Previous studies in zebrafish, however, support a coding

strategy whereby different behavioral modules are controlled by

separate pools of cells (Orger et al., 2008; Thiele et al., 2014).

A Dynamic Circuit Model of Sensori-motor
Transformations during Heat Perception
Models constrained by behavioral and physiological data pro-

vide important insight into the logic of sensori-motor transforma-

tions (Clark et al., 2013). Recently, modeling has been used in the

larval zebrafish to understand processes underlying prey selec-

tion (Bianco and Engert, 2015) as well as the generation of the

optomotor response (Naumann et al., 2016). This approach re-

sulted in a realistic circuit model of optomotor-induced turning,

revealing the circuit logic of binocular stimulus integration (Nau-

mann et al., 2016). We similarly used known anatomy and

observed neural activity to derive a realistic circuit model of tem-

perature perception. Correlational analysis strongly suggested

that a critical step in the sensori-motor transformations is the

observed change of temperature representation between the tri-

geminal ganglia neurons and their Rh 5/6 target region in the

hindbrain. This transformation especially improves the predic-

tion of undulating swim behavior while flicks are already fully pre-

dicted at the level of sensory activity in the trigeminal ganglia.

Unilateral trigeminal ablations significantly reduced the number

of temperature-responsive cells in Rh 5/6 (Figure 2G), and we

therefore reasoned that the simplest plausible circuit would

consist of the trigeminal neurons, the cells in their Rh 5/6 target

area, and the identified motor cells.

Since the stimulus space is characterized by the dynamics of

temperature change, we had to extend previous modeling ap-

proaches and devise a circuit model that takes these dynamics

into account. In fact, a comparison model using static-rate cod-

ing alone fails to replicate activity and behavior (Figures S5J,

S6C–S6D, and S6F). For stimulus encoding and the transforma-

tion of temperature representation in the brain, the model there-

fore consists not only of linear coefficients but also of filter

kernels that are fit for each cell type separately. These filter ker-

nels allow quantification of the dynamical changes in heat repre-

sentation (Figures 5A and 5B). Using this approach, we find that

while slow-OFF cells in Rh5/6 largely copy their trigeminal input,



other cell types, such as the fast-ON and fast-OFF cells, rely on

adaptation to transform their inputs.

In the model, the filter kernels are a property of a given cell

type, effectively acting as input filters. This is a plausible expla-

nation, as different cell intrinsic processes can lead to the

observed spiking adaptation in the fast-ON or -OFF cell type or

to more complex interactions between adaptation and bursting

behavior, as suggested in the filter of the delayed-OFF type (Blair

and Bean, 2003; Friedman et al., 1992; Kernell and Monster,

1982; Pedarzani and Storm, 1993). Further experiments using

patch-clamp recording in identified cells are needed to decide

whether these are indeed properties of the cells or rather

emerging features of local circuits. Furthermore, the model sug-

gests long timescales on the filter properties. These timescales

are plausible for processes such as late adaptation observed

in motoneurons or hippocampal neurons (Kernell and Monster,

1982; Pedarzani and Storm, 1993) or slow afterpotentials

involved in cortical bursting (Bean, 2007; Friedman et al.,

1992). On the other hand, the nature of calcium imaging together

with the inherent noise precludes a full quantitative interpretation

of the filter-kernel timescales (Figure S5H). They do, however,

make clear qualitative statements about expected cellular prop-

erties, which can be confirmed with future experiments using

electrophysiology or voltage imaging.

The Circuit Model as a Framework for Hypothesis
Testing
Our circuit model makes clear and testable predictions about the

computations and architecture underlying the sensori-motor

transformations during heat perception.

While trigeminal fibers are largely glutamatergic (Lazarov,

2002), three of the five cell types identified in Rh 5/6 in the hind-

brain rely on inhibitory inputs. The model therefore posits that

part of the slow-ON and slow-OFF cell types should be inhibi-

tory interneurons. At the same time, excitatory projections

from these neurons onto motor cells are required to explain

the activity rates of some motor types. This possibility is well

supported by our own experimental results revealing a mix of

excitatory and inhibitory neurons for all cell classes in the hind-

brain (Figure S5I).

Our previous behavioral study predicted that straight swims

should be activated by a strong OFF signal, which is less influen-

tial for turning (Haesemeyer et al., 2015). This study supports this

conclusion: the circuit model predicts that swim motor cells are

most strongly driven by the fast-OFF cell type (Figure 5C3), and

in our head-embedded preparation, swims persist after stimulus

offset while flicks—likely corresponding to stationary turns—

subside quickly (Figure 1F).

The core transformation from the trigeminal to the hindbrain to

the motor output is well captured by our dynamic circuit model,

which is constrained by a variety of activity measurements and

which we validated by testing its predictive power against novel

sensory stimuli. Such a brain-wide realistic model that captures

the dynamic aspects of sensorimotor transformations is novel in

the context of temperature processing and provides a computa-

tional and experimental framework for generating testable circuit

models of temporal coding. Furthermore, the general model ar-

chitecture presented herewill allow inclusion ofmodules respon-
sible for higher-order processing, such as observed activity in

the cerebellum and forebrain areas, in the future, and it can be

easily applied to other stimuli and organisms to capture similar

transformations in representation.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS
B Imaging and behavior

B Stimulus characterization

B Image stabilization

B Image segmentation

B Registration and annotation

B Swim-bout identification and classification

B Clustering of heat- and motor-related activity

B Identification of heat- and tap-responsive cells

B Nearest neighbor distance metrics

B Information metrics

B Determination of neurotransmitter types

B Trigeminal ablations

B Circuit model

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Data shuffles

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and can be found with this

article online at https://doi.org/10.1016/j.neuron.2018.04.013.

ACKNOWLEDGMENTS

M.H. was supported in part of this project by an EMBO Long Term Postdoc-

toral fellowship (ALTF 1056-10) and a postdoctoral fellowship by the Jane

Coffin Childs Fund for Biomedical Research (61-1468). Research was funded

by NIH grants DP1-NS082121, U01NS090449, U19NS104653, and

5R24NS086601 to F.E. and 1DP1HD094764 to A.F.S. We thank Iris Odstrcil

for being the ablation consultant on this project. We thank Ruben Portugues,

Andrew D. Bolton, James Fitzgerald, and Aravi Samuel for critical discussion

and helpful comments on the manuscript.

AUTHOR CONTRIBUTIONS

M.H. conceived the project in discussion with F.E. and A.F.S. and carried out

all experiments. D.N.R. and J.M.L. built the 2-photon microscope and IR stim-

ulus delivery and wrote the imaging software. M.H. wrote the online stabiliza-

tion pipeline and all analysis software, analyzed the data, and built the model.

M.H., A.F.S., and F.E interpreted the data and wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 28, 2017

Revised: March 1, 2018

Accepted: April 10, 2018

Published: May 3, 2018
Neuron 98, 817–831, May 16, 2018 829

https://doi.org/10.1016/j.neuron.2018.04.013


REFERENCES

Bean, B.P. (2007). The action potential in mammalian central neurons. Nat.

Rev. Neurosci. 8, 451–465.

Bianco, I.H., and Engert, F. (2015). Visuomotor transformations underlying

hunting behavior in zebrafish. Curr. Biol. 25, 831–846.

Bicego, K.C., and Branco, L.G.S. (2002). Discrete electrolytic lesion of the pre-

optic area prevents LPS-induced behavioral fever in toads. J. Exp. Biol. 205,

3513–3518.

Blair, N.T., and Bean, B.P. (2003). Role of tetrodotoxin-resistant Na+ current

slow inactivation in adaptation of action potential firing in small-diameter dor-

sal root ganglion neurons. J. Neurosci. 23, 10338–10350.

Boulant, J.A. (2000). Role of the preoptic-anterior hypothalamus in thermoreg-

ulation and fever. Clin. Infect. Dis. 31 (Suppl 5 ), S157–S161.

Budick, S.A., and O’Malley, D.M. (2000). Locomotor repertoire of the larval ze-

brafish: swimming, turning and prey capture. J. Exp. Biol. 203, 2565–2579.

Cabanac, M., Hammel, T., and Hardy, J.D. (1967). Tiliqua scincoides: temper-

ature-sensitive units in lizard brain. Science 158, 1050–1051.

Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman,

O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al. (2006).

CellProfiler: image analysis software for identifying and quantifying cell pheno-

types. Genome Biol. 7, R100.

Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D.,

and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in

the pain pathway. Nature 389, 816–824.

Clark, D.A., Biron, D., Sengupta, P., and Samuel, A.D.T. (2006). The AFD sen-

sory neurons encode multiple functions underlying thermotactic behavior in

Caenorhabditis elegans. J. Neurosci. 26, 7444–7451.

Clark, D.A., Gabel, C.V., Gabel, H., and Samuel, A.D.T. (2007). Temporal activ-

ity patterns in thermosensory neurons of freely moving Caenorhabditis elegans

encode spatial thermal gradients. J. Neurosci. 27, 6083–6090.

Clark, D.A., Freifeld, L., and Clandinin, T.R. (2013). Mapping and cracking

sensorimotor circuits in genetic model organisms. Neuron 78, 583–595.

Dean, J.B., and Boulant, J.A. (1989). In vitro localization of thermosensitive

neurons in the rat diencephalon. Am. J. Physiol. 257, R57–R64.

Dunn, T.W., Mu, Y., Narayan, S., Randlett, O., Naumann, E.A., Yang, C.-T.,

Schier, A.F., Freeman, J., Engert, F., and Ahrens, M.B. (2016). Brain-wide

mapping of neural activity controlling zebrafish exploratory locomotion. eLife

5, e12741.

Erzurumlu, R.S., Chen, Z.-F., and Jacquin, M.F. (2006). Molecular determi-

nants of the face map development in the trigeminal brainstem. Anat. Rec. A

Discov. Mol. Cell. Evol. Biol. 288, 121–134.

Frank, D.D., Jouandet, G.C., Kearney, P.J., Macpherson, L.J., and Gallio, M.

(2015). Temperature representation in the Drosophila brain. Nature 519,

358–361.

Freeman, J., Vladimirov, N., Kawashima, T., Mu, Y., Sofroniew, N.J., Bennett,

D.V., Rosen, J., Yang, C.-T., Looger, L.L., and Ahrens, M.B. (2014). Mapping

brain activity at scale with cluster computing. Nat. Methods 11, 941–950.

Friedman, A., Arens, J., Heinemann, U., and Gutnick, M.J. (1992). Slow depo-

larizing afterpotentials in neocortical neurons are sodium and calcium depen-

dent. Neurosci. Lett. 135, 13–17.

Gallio, M., Ofstad, T.A., Macpherson, L.J., Wang, J.W., and Zuker, C.S. (2011).

The coding of temperature in the Drosophila brain. Cell 144, 614–624.

Gjorgjieva, J., Sompolinsky, H., and Meister, M. (2014). Benefits of pathway

splitting in sensory coding. J. Neurosci. 34, 12127–12144.

Haesemeyer, M., Robson, D.N., Li, J.M., Schier, A.F., and Engert, F. (2015).

The structure and timescales of heat perception in larval zebrafish. Cell Syst.

1, 338–348.

Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains

and their applications. Biometrika 57, 97–109.
830 Neuron 98, 817–831, May 16, 2018
Hedgecock, E.M., and Russell, R.L. (1975). Normal and mutant thermotaxis

in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 72,

4061–4065.

Hoffman, M.D., and Gelman, A. (2014). The No-U-turn sampler: adaptively

setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15,

1593–1623.

Huang, K.-H., Ahrens, M.B., Dunn, T.W., and Engert, F. (2013). Spinal projec-

tion neurons control turning behaviors in zebrafish. Curr. Biol. 23, 1566–1573.

Julius, D., and Basbaum, A.I. (2001). Molecular mechanisms of nociception.

Nature 413, 203–210.

Kawashima, T., Zwart, M.F., Yang, C.-T., Mensh, B.D., and Ahrens, M.B.

(2016). The Serotonergic System Tracks the Outcomes of Actions to

Mediate Short-Term Motor Learning. Cell 167, 933–946.e20.

Kernell, D., andMonster, A.W. (1982). Time course and properties of late adap-

tation in spinal motoneurones of the cat. Exp. Brain Res. 46, 191–196.

Kim, D.H., Kim, J., Marques, J.C., Grama, A., Hildebrand, D.G.C., Gu, W., Li,

J.M., and Robson, D.N. (2017). Pan-neuronal calcium imaging with cellular

resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114.

Lacoste, A.M.B., Schoppik, D., Robson, D.N., Haesemeyer, M., Portugues, R.,

Li, J.M., Randlett, O., Wee, C.L., Engert, F., and Schier, A.F. (2015). A conver-

gent and essential interneuron pathway for Mauthner-cell-mediated escapes.

Curr. Biol. 25, 1526–1534.

Lazarov, N.E. (2002). Comparative analysis of the chemical neuroanatomy of

the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus.

Prog. Neurobiol. 66, 19–59.

Liu,W.W., Mazor, O., andWilson, R.I. (2015). Thermosensory processing in the

Drosophila brain. Nature 519, 353–357.

Madelaine, R., Lovett-Barron, M., Halluin, C., Andalman, A.S., Liang, J.,

Skariah, G.M., Leung, L.C., Burns, V.M., andMourrain, P. (2017). The hypotha-

lamic NPVF circuit modulates ventral raphe activity during nociception. Sci.

Rep. 7, 41528.

Maeda, K., Imae, Y., Shioi, J.I., and Oosawa, F. (1976). Effect of temperature

on motility and chemotaxis of Escherichia coli. J. Bacteriol. 127, 1039–1046.

Miri, A., Daie, K., Burdine, R.D., Aksay, E., and Tank, D.W. (2011). Regression-

based identification of behavior-encoding neurons during large-scale optical

imaging of neural activity at cellular resolution. J. Neurophysiol. 105, 964–980.

Murakami, H., and Kinoshita, K. (1977). Spontaneous activity and heat avoid-

ance of mice. J. Appl. Physiol. 43, 573–576.

Naumann, E.A., Fitzgerald, J.E., Dunn, T.W., Rihel, J., Sompolinsky, H., and

Engert, F. (2016). From Whole-Brain Data to Functional Circuit Models: The

Zebrafish Optomotor Response. Cell 167, 947–960.e20.

Orger, M.B., Kampff, A.R., Severi, K.E., Bollmann, J.H., and Engert, F. (2008).

Control of visually guided behavior by distinct populations of spinal projection

neurons. Nat. Neurosci. 11, 327–333.

Pan, Y.A., Choy, M., Prober, D.A., and Schier, A.F. (2012). Robo2 deter-

mines subtype-specific axonal projections of trigeminal sensory neurons.

Development 139, 591–600.

Pedarzani, P., and Storm, J.F. (1993). PKAmediates the effects of monoamine

transmitters on the K+ current underlying the slow spike frequency adaptation

in hippocampal neurons. Neuron 11, 1023–1035.

Portugues, R., Feierstein, C.E., Engert, F., and Orger, M.B. (2014). Whole-

brain activity maps reveal stereotyped, distributed networks for visuomotor

behavior. Neuron 81, 1328–1343.

Portugues, R., Haesemeyer, M., Blum, M.L., and Engert, F. (2015). Whole-field

visual motion drives swimming in larval zebrafish via a stochastic process.

J. Exp. Biol. 218, 1433–1443.

Ran, C., Hoon, M.A., and Chen, X. (2016). The coding of cutaneous tempera-

ture in the spinal cord. Nat. Neurosci. 19, 1201–1209.

Randlett, O., Wee, C.L., Naumann, E.A., Nnaemeka, O., Schoppik, D.,

Fitzgerald, J.E., Portugues, R., Lacoste, A.M.B., Riegler, C., Engert, F., and

Schier, A.F. (2015). Whole-brain activity mapping onto a zebrafish brain atlas.

Nat. Methods 12, 1039–1046.

http://refhub.elsevier.com/S0896-6273(18)30297-6/sref1
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref1
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref2
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref2
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref3
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref3
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref3
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref4
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref4
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref4
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref5
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref5
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref5
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref6
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref6
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref7
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref7
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref8
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref9
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref9
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref9
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref10
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref10
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref10
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref11
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref12
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref12
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref13
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref13
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref14
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref15
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref15
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref15
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref16
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref16
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref16
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref17
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref17
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref17
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref18
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref18
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref18
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref19
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref19
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref20
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref20
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref21
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref21
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref21
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref22
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref22
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref23
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref23
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref23
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref24
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref24
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref24
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref25
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref25
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref26
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref26
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref27
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref27
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref27
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref28
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref28
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref29
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref29
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref29
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref30
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref30
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref30
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref30
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref31
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref31
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref31
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref32
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref32
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref33
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref33
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref33
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref33
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref34
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref34
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref35
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref35
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref35
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref36
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref36
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref37
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref37
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref37
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref38
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref38
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref38
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref39
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref39
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref39
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref40
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref40
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref40
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref41
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref41
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref41
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref42
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref42
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref42
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref43
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref43
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref44
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref44
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref44
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref44


Rohlfing, T., and Maurer, C.R., Jr. (2003). Nonrigid image registration in

shared-memory multiprocessor environments with application to brains,

breasts, and bees. IEEE Trans. Inf. Technol. Biomed. 7, 16–25.

Salvatier, J., Wiecki, T.V., and Fonnesbeck, C. (2016). Probabilistic program-

ming in Python using PyMC3. Peer. PeerJ Computer Science 2, e55.

Satou, C., Kimura, Y., Hirata, H., Suster, M.L., Kawakami, K., and Higashijima,

S. (2013). Transgenic tools to characterize neuronal properties of discrete pop-

ulations of zebrafish neurons. Development 140, 3927–3931.

Schepers, R.J., and Ringkamp, M. (2010). Thermoreceptors and thermosensi-

tive afferents. Neurosci. Biobehav. Rev. 34, 177–184.
Severi, K.E., Portugues, R., Marques, J.C., O’Malley, D.M., Orger, M.B., and

Engert, F. (2014). Neural control and modulation of swimming speed in the

larval zebrafish. Neuron 83, 692–707.

Thiele, T.R., Donovan, J.C., and Baier, H. (2014). Descending control of swim

posture by a midbrain nucleus in zebrafish. Neuron 83, 679–691.

Wu, J.Y., Cohen, L.B., and Falk, C.X. (1994). Neuronal activity during different

behaviors in Aplysia: a distributed organization? Science 263, 820–823.

Yarmolinsky, D.A., Peng, Y., Pogorzala, L.A., Rutlin, M., Hoon, M.A., and

Zuker, C.S. (2016). Coding and Plasticity in the Mammalian Thermosensory

System. Neuron 92, 1079–1092.

Zahl, S. (1977). Jackknifing an index of diversity. Ecology 58, 907–913.
Neuron 98, 817–831, May 16, 2018 831

http://refhub.elsevier.com/S0896-6273(18)30297-6/sref45
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref45
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref45
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref46
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref46
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref47
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref47
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref47
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref48
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref48
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref49
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref49
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref49
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref50
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref50
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref51
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref51
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref52
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref52
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref52
http://refhub.elsevier.com/S0896-6273(18)30297-6/sref53


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Tg(elavl3:H2B-GCaMP6s) Freeman et al., 2014 jf5

Tg(elavl3:GCaMP6s) Kim et al., 2017 a13203

TgBAC(slc17ab:LOXP-mCherry-LOXP-GAL4) –

vglut2a;mCherry

Satou et al., 2013 nns21Tg

TgBAC(gad1b:LOXP-RFP-LOXP-GFP) – gad1b:RFP Satou et al., 2013 nns26Tg

Tg(elavl3:H2B-RFP) Randlett et al., 2015 NA

Software and Algorithms

C# (.NET Framework 4.0; Two-photon acquisition) This study NA

Python analysis software This study NA

FIJI (ImageJ; anatomy) NIH http://fiji.sc

Cell profiler (Nuclear segmentation) Broad Institute http://cellprofiler.org

RegionSelector – to segment regions in imaging stacks This study https://github.com/haesemeyer/RegionSelector
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Florian

Engert (florian@mcb.harvard.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted on 6-7 days post fertilization zebrafish homozygous for the nacre mutation expressing the trans-

genes indicated below. The sex of the larva is not defined at this early stage. Fish were fed paramecia from day 5 onward. All exper-

iments followed the guidelines of the National Institutes of Health and were approved by the Standing Committee on the Use of An-

imals in Research of Harvard University.

All experiments used for mapping heat responsive neurons and for model derivation used fish expressing nuclear Elavl3:H2B-

GCaMP6s fish (Freeman et al., 2014). Experiments combining heat and taps as well as trigeminal ablations were performed in fish

expressing cytoplasmic Elavl3:Gcamp6s (Kim et al., 2017). We note that while the decay time-constants for cytoplasmic and nuclear

GCaMP are different, we found this effect to be negligible given the slow timescales of our temperature stimulus.

To develop the scan stabilization protocol Elavl3:H2B-RFP fish expressing RFP in all neuronal nuclei were used (Randlett

et al., 2015).

To identify neurotransmitter types of heat modulated neurons, progeny of crosses between Elavl3:H2B-Gcamp6s (Freeman et al.,

2014) and either vglut2a:mCherry (Satou et al., 2013) or gad1B:dsRed (Satou et al., 2013) expressing fish were used.

METHOD DETAILS

Since almost all analysis in this study was performed in an automated manner, no blinding or randomization was performed. All sam-

ple sized were fixed before the start of experiments and all animals were analyzed except those that freed themselves from the prep-

aration during imaging or that died during the experimental procedure.

Imaging and behavior
Larval zebrafish were embedded in 2.5%medium melt agarose (Fisher scientific, USA) and their tails were freed the night before the

experiment. Experiments were conducted in a custom built 2-photon microscope and run using custom written software in C# (Mi-

crosoft, USA). Heat stimuli were delivered using a 1W 980nm fiber-coupled diode laser (Roithner, Austria) coupled into a collimator

(Aistana Inc., USA) placed under themicroscope objective 4mm in front of and 1.2 mm above the head of the zebrafish larva pointing

downward at an angle of 16.5 degrees. The laser power was controlled by the computer via a laser diode driver (Thorlabs, USA). We

note that the 980 nm laser itself did not excite GCaMP fluorescence due to the low photon density.
e1 Neuron 98, 817–831.e1–e6, May 16, 2018
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The main mapping experiments consisted of the imaging of 30 individual planes, spaced 2.5 mm apart. In each plane 3 trials of the

stimulus depicted in Figure 1B were presented.

The heat and tap experiments consisted of imaging 4 individual planes, spaced 5 mm apart. In each plane 25 trials of the stimulus

depicted in Figure S1G were presented.

To avoid excessive heating of the preparation by scanning over the eyes, custom exclusion masks were created for each exper-

iment in which the eyes were in the field of view, restricting the scan-lines such that the eyes were excluded from the field of view.

Imaging was performed at 2.4 Hz - 3 Hz and all imaging data was interpolated to a 5 Hz timebase before further analysis. Tail-

tracking data was acquired at 100 Hz. All behavioral features such as identifying and classifying bouts were performed at this time-

base, however, for all comparisons of behavior and imaging, the behavioral data was downsampled to a 5 Hz timebase.

Stimulus characterization
To measure the temperature induced in larval zebrafish by the laser stimulus a thermistor with the same dimension and absorption

characteristics as larval zebrafish was used (Warner instruments, USA; Haesemeyer et al., 2015). The thermistor was embedded in

the same low-melting point agarose as the larval zebrafish and the laser was positioned accordingly (Madelaine et al., 2017). For each

stimulus used, temperature changes in the thermistor were subsequently recorded. While tissue absorption is not homogeneous for

larval zebrafish, modeling of thermal flux revealed that over the short length scales at this age there won’t be an uneven distribution of

temperature within the head of larval zebrafish due to the thermal conductivity of water within about 250ms of stimulus onset. In other

words, equilibration happensmuch faster than the timescales of our stimulus (not shown). Furthermore, the size of the laser spot was

set such that it is larger than the head of the fish.

Image stabilization
To counter heat-induced deformations of the preparation, before each plane was scanned a ± 5 mm sized pre-stack consisting of 21

slices spaced 0.4 mm apart was acquired. During scanning, each acquired plane was cross-correlated with each plane in the pre-

stack and using a low-pass filter the position of the objective was adjusted online so as to minimize z-drift. Since the heat induced

drift observed in Elavl3:H2B-RFP stacks followed very reproducible kinetics these were used to predict the movement induced by

heating during our experiments to induce very slight movements in the predicted direction. This served to overcome the delay

induced by the low-pass filter.

A second alignment step was performed post-acquisition. Here each individual imaging plane was assigned to the most likely

plane in the pre-stack that it corresponds to via correlation. The fluorescence timeseries of each segmented regionwas subsequently

corrected by normalizing it with the resting fluorescence of this region in the pre-stack.

Image segmentation
Cells in each plane were segmented anatomically. To correct for motion artifacts individual planes in each timeseries were re-aligned

based on image cross-correlations (Miri et al., 2011). For nuclear GCaMP experiments, individual nuclei were subsequently

segmented using Cell Profiler (Carpenter et al., 2006). To resolve merged nuclei in areas of low contrast, objects larger than a typical

nuclear size were divided into subregions based on pixel timeseries correlations. For experiments using cytoplasmic GCaMP,

custom written software was used to identify individual cells. Each image was processed using a minimum and a maximum filter

tuned to nuclear size. Points where the differences between the two filtered results crossed a threshold (at least 20% of the average

region brightness) were considered potential cell centroids. After including seed pixels around the centroids individual regions were

grown in a greedy manner, incorporating pixels that were better correlated to their own current average activity than to neighboring

averages. Resulting correlations masks were intersected with anatomical masks based on cell size to obtain the final segmentation.

Registration and annotation
3D image registration based onCMTK (Rohlfing andMaurer, 2003) was used to create a nuclear GCaMP-6 s reference stack towhich

all experimental stacks were registered as described elsewhere (Portugues et al., 2014; Randlett et al., 2015).

The reference brain was used to annotate anatomical regions of interest based on Z-Brain annotations (Randlett et al., 2015).

Swim-bout identification and classification
Swim bouts were identified as described previously (Portugues et al., 2015), namely based on the windowed standard deviation of

the tail cumulative angle trace crossing a threshold. The mode-centered cumulative angle trace a of each bout was subsequently

used to assign the following score:

bias=

X
a
aX

a
ja j

Right flicks were defined as bouts with a bias < �0.8, left flicks as bouts with a bias > 0.8 and all other bouts were defined as

‘‘swims.’’ These cutoffs were chosen since the histogram of all bias scores has a minimum at those points.
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Clustering of heat- and motor-related activity
To identify motor related activity, motor regressors were created by convolving a bout start trace with an exponential calcium kernel

with a decay half time of 3 s. This decay time was derived from motor triggered averages across hindbrain neurons. Behavioral sub-

type regressors were created by only considering bouts of a given type. The behavioral regressors that differentiate stimulus and rest

periods were created by only considering motor events during those respective phases. Every cell with a correlation of at least 0.6 to

at least one motor regressor was considered a ‘‘motor cell.’’ Since not all behaviors were observed in all imaging planes, cells were

only assigned to amore specific category (such as swims versus all bouts) if the correlation to the more specific regressor was signif-

icantly higher (p < 0.01, bootstrap hypothesis test) than to any more general regressor.

To identify heat responses across the whole brain spectral clustering was performed on a subset of cells since computing a pair-

wise correlation matrix of all cells and then performing clustering was not feasible. To arrive at a ‘‘canonical subset’’ for clustering the

following filtering steps were performed. First for each cell the activity standard deviation during stimulus periods versus the standard

deviation during rest periods was computed. All cells for which the standard deviation during stimulation was not greater than the

standard deviation during rest were excluded, reasoning that those cells are unlikely to be stimulus modulated. Furthermore, all cells

that had a correlation > 0.4 to a motor regressor were removed. This reduced the original number of cells from 699,840 down to

53,728 cells. For all these cells the pairwise correlations were computed. Any cells that did not have at least 20 partners across at

least 3 fish that each explained 40% of the cells variance were discarded. The reasoning behind this step was to enrich the consid-

ered set for canonical stimulus responses at the expense of discarding any rare response types. After this step 19,389 cells or 2.8%of

the original amount remained. We note however, that asking for merely one additional partner is responsible for 80%

of the observed reduction. After arriving at the filtered set of cells the trial-average response of each remaining cell was computed

and spectral clustering with pairwise correlations as similarity matrix asking for 6 total clusters was performed. Subsequently the

cluster averages were used as regressors, probing the entire set of 699,840 cells. Each cell that had a correlationR 0.6 was included

in the final cell clusters. Across the resulting clusters about half the cells came from the original ‘‘canonical set’’ while the other half

was made up of previously discarded cells.

To identify heat modulated cells in specific brain regions we used the transformations computed during image registration of our

experimental stacks together with ourmanual segmentation to assign each nuclear centroid to a brain region. From each brain region

all cells that were correlated > 0.4 to any motor regressor were discarded. Since the number of cells in each region wasmuch smaller

than for thewhole brain no further filteringwas necessary and spectral clusteringwas performed on all the non-motor correlated cells.

Overall the aim was to obtain as many different response types as possible. Setting the number of retrieved clusters to 6, at least one

unstructured cluster was obtained in each region. The averages of remaining clusters were subsequently again used as regressors to

identify responsive cells in the given region via a correlation R 0.6 to the cluster average. Highly correlated clusters (r > 0.9) were

subsequently merged. This simplified display of the data but had no influence on the further analysis (data not shown) as the highly

correlated sister-clusters did not add explanatory power.

To calculate DF/F0 values for reporting cell fluorescence we used the average across the first baseline period as the resting fluo-

rescence F0.

Identification of heat- and tap-responsive cells
To identify heat responsive, tap responsive or mixed cells in the heat and tap experiments the timeseries of individual cells were cate-

gorized in the following manner. First using behavioral regressors all cells with a motor correlation > 0.4 were sorted out. Subse-

quently the period of sinewave heat stimulation (as this created the largest heat responses overall) as well as the period of the tap

was used to calculate an activation score a averaged across the 25 trials T:

a=
1

25

X
T

���Fpre � Fstim

���
spre

Cells for which a > 2 were considered responsive for the given stimulus, cells where a < 0.75 were considered unresponsive and

cells with intermediate scores were discarded. These criteria defined inclusion in the heat-responsive, tap-responsive or mixed cat-

egories. We note that these scores are fairly strict and overall identified fewer cells across Rh5/6 than the regressor based identifi-

cation used in Figure 6.

Nearest neighbor distance metrics
To compute nearest neighbor distance metrics for all cells the transformations obtained during image registration were used to map

the centroids of all segmented nuclei into a common reference frame. For each cell of interest, the average distance to its two nearest

neighbors of the same or comparison type was subsequently computed. Since nearest neighbor distances are influenced by the

number of cells in each type as well, when comparing distances, the number of cells was down-sampled to the amount present

in the smaller sample used for the comparison.
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Information metrics
To compute the mutual information scores, the required entropies and joint entropies were computed using a jackknife estimate in

order to reduce bias on small sample sizes (Zahl, 1977).

To compute an approximation of themutual information between all region activity and themotor output principal component anal-

ysis was used for dimensionality reduction. This was necessary as memory requirements for computing the mutual information

estimates grow exponentially with the number of traces considered. All mean cluster activities from all segmented regions were com-

bined and principal components were extracted. The first five principal components explained > 95% of the total variance. These

were subsequently used to compute the mutual information between these components and the motor output.

Determination of neurotransmitter types
To determine the neurotransmitter type of heat responsive cells in Rhombomeres 5/6 nuclear GCaMP6s was imaged using the heat

stimulus in the presence of either a red vGlut2a (excitatory neurons) or red Gad1b (inhibitory neurons) label. Cells were subsequently

segmented as described above and cell type cluster averages were used to identify cells of each type present in Rhombomere 5/6.

Cells were subsequently cross-referenced with the transmitter label and expression ratios (positive / negative) were determined.

Trigeminal ablations
For trigeminal ablations the hindbrain of fish expressing cytoplasmic GCaMP6s was first imaged using the heat stimulus to identify

heat responsive neurons. Subsequently individual cells in one trigeminal ganglion were ablated using 25 ms long pulses of high laser

power (300mWat sample at 850 nm), starting ventrally in the trigeminal andmoving dorsally. In total around 40 pulses were delivered

in each experiment resulting in partial destruction of the trigeminal ganglion. Damage was subsequently assessed by anatomical im-

aging. 2 fish were discarded right after the anatomical assessment, because no damage to the trigeminal was visible. A further set of

4 fish died before completion of the experiment and were therefore not analyzed. All 5 fish that survived the functional post-exper-

iment were still healthy the following day andwere included in the analysis. No fish were discarded after analyzing the functional data.

Circuit model
The circuit model was constructed as a feed-forward model from stimulus to behavioral output. The activation A in each stage

(Trigeminal ganglion - Rh5/6 region of the hindbrain - Motor cells - Behavior) was described as a linear combination of the activations

in the previous stage, optionally convolved with a linear filter f (Trigeminal and Rh5/6) and passed through an output nonlinearity g

(Trigeminal and Rh5/6):

Ai =g
��
Ai�1b

T
� � f�

The linear filter f was necessary to explain the transformations between different response dynamics. The linear parts of each

model stage (b and f) were fit via Markov-chain Monte Carlo using PyMC3 (Salvatier et al., 2016). Since all our likelihoods were differ-

entiable allowing gradient calculation we used the no-uturn sampler in PyMC3 for sample generation (Hoffman and Gelman, 2014).

Cubic output nonlinearities were subsequently fit using least-squares optimization in Python. The time-resolutionDt of all models was

set to 0.2 s the same as the time resolution of our interpolated imaging traces.

We note that our model does not operate on raw neuronal or behavior traces, but the inputs and outputs of all stages were

z-scored. This is a more conservative approach due to the nonlinear relationship between calcium signals and neuronal activity.

Stimulus encoding in the trigeminal ganglion

To capture the encoding of the heat stimulus in the observed trigeminal calcium activity the filter was parametrized as an exponential

on/off filter akin to a calcium kernel.

fðDt; toff ; tonÞ= e
� Dt
toff �

 
1� e

� Dt
ton

!
j � 20s <Dt%0

To simplify computation, convolution in the model was expressed via piecewise multiplications such that the predicted output ac-

tivity A(t) of the trigeminal ON and OFF cells at each time point t was described in terms of the temperature stimulus T(t) as

Aðt;b; fÞ= b
X
Dt

Tðt � DtÞfðDtÞ j � 20s <Dt%0

The prior parameter distributions used for the MCMC process were as follows:

b � Nð0; 2Þ
ton � Nð0; 5Þ
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toff � Nð0; 200Þ
s � jN ð0; 1Þ j
The likelihood of the model was subsequently defined in terms of a normal distribution centered according to:

LðAðb; fÞÞ jA � NðAðt;b; fÞ; sÞ
Transformation of trigeminal activity in Rh5/6

To express the activity in this hindbrain region in terms of the activity of trigeminal cell-types we used a filter-parametrization that

would allow for integrating as well as differentiating filters:

fðDt; s; ô1; t2Þ= sDte
�Dt
t0 + ð1� DtÞe�Dt

t1 j�4s%Dt%0

To simplify computation, convolution in the model was again expressed via piecewise multiplications such that the predicted

output activity A(t) of a cell type in Rh5/6 was described in terms of the input activities ON(t) and OFF(t) as:

Aðt;bON; bOFF ; fÞ= bON

X
Dt

ONðt � DtÞfðDtÞ+ bOFF

X
Dt

OFFðt � DtÞfðDtÞ j�4s%Dt%0

Since trigeminal neurons are largely glutamatergic, we enforced all trigeminal inputs to have activating effects in our models. How-

ever, to express the Fast-ON, Fast-OFF and Delayed-OFF types in terms of their inputs required inhibition. Those Rh 5/6 types were

therefore expressed in terms of a strictly activating trigeminal input and a potentially inhibitory input from either the Slow-ON or Slow-

OFF type. The prior distributions of b reflected this constraint:

Slow-ON, Slow-OFF

bON � jN ð0; 2Þ j
bOFF � jN ð0; 2Þ j
Fast-ON, Fast-OFF

bON � jN ð0; 2Þ j
bOFF � Nð0; 2Þ
Delayed OFF

bON � Nð0; 2Þ
bOFF � jN ð0; 2Þ j
The priors of the remaining parameters were shared between all models:

t1 � jN ð0; 10Þ j
t2 � jN ð0; 10Þ j
s � jN ð0; 5Þ j

s � jN ð0; 1Þ j
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The likelihood of the model was subsequently defined in terms of a normal distribution centered according to:

LðAðbON; bOFF ; fÞÞ jA � NðAðt; bON;bOFF ; fÞ; sÞ
Rate coding steps

The last two stages of the model were implemented as simple linear regression steps relating the weighted sum of input activity to

output activity.

AoutðbÞ=Ainb
T

The prior distributions on the parameters b and the error standard deviation s were defined as:

bi � Nð0; 2Þ
s � jN ð0; 1Þ j
And the model likelihood was expressed according to:

LðAðbÞÞ jA � NðAoutðbÞ; sÞ
Simulation of filter derivation

To test the influence of noise in our data on filtering, a simple simulation was performed. The temperature stimulus T(t) was used as

the input to a sharp high pass filter (Figure S5I, orange line) to create the discrete difference trace dT(t) of the temperature stimulus:

dTðtÞ=TðtÞ � Tðt � 1Þ
Both the original temperature trace and the difference trace were subsequently corrupted by i.i.d. Gaussian noise:

IðtÞ=TðtÞ+ eðtÞ jeðtÞ � N ð0; 0:2Þ
OðtÞ= dTðtÞ+ eðtÞ jeðtÞ � N ð0; 0:2Þ
These traces were subsequently used as inputs and outputs to derive amodel using the same filter parametrization and strategy as

above for cell types in Rhombomeres 5 and 6. As can be seen in Figure S5I, the derived filter (black trace) extends over considerably

longer timescales than the true differencing filter (orange trace).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis was performed in python.

All confidence intervals and standard errors displayed in figures are derived using bootstrapping across cells and appropriate

n-values are indicated in the figure legend. As indicated in the figure legends bootstrap hypothesis testing was used to determine

significance testing except in the case of trigeminal ablations where a nonparametric ranksum test was used across 3 fish to assess

significance. Counts either refer to cells or individual fish as indicated in the figure legends where applicable.

Data shuffles
Since the stimulus presented on each imaging plane is repeated three times, cell activity that reflects the stimulus should follow the

same repeat structure. The data shuffles used for the analysis of heat modulated cells in Figures S1D–S1E and S4E–S4F were there-

fore generated as follows. Each cell’s activity trace was split into the three repeats and each repeat was independently circularly

permuted. This should break the repeat structure but leave in-repeat timescale structures intact. The activity generated this way

was subsequently subjected to the same whole-brain or regional clustering approaches detailed above.

Since regression-based analysis was used to identify motor-correlated cells a different approachwas used to create the controls in

Figure S3A–S3C. In this case the whole activity trace of a cell was circularly permuted with respect to the motor regressors again

keeping the overall structure of the activity data intact. The shuffled activity was subsequently probed with the motor regressors

as described above.

DATA AND SOFTWARE AVAILABILITY

Raw experimental data (�40 GB) and custom written analysis as well as acquisition software will be made available by the authors

upon request.
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